This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330052 #9 Jan 27 2024 16:06:01 %S A330052 0,1,2,4,8,18,40,94,228,579,1508,4092,11478,33337,100016,309916, %T A330052 990008,3257196,11021851,38314009,136657181,499570867,1869792499, %U A330052 7158070137,28003286261,111857491266,455852284867,1893959499405,8017007560487,34552315237016,151534813272661 %N A330052 Number of non-isomorphic set-systems of weight n with at least one endpoint. %C A330052 A set-system is a finite set of finite nonempty sets of positive integers. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %H A330052 Andrew Howroyd, <a href="/A330052/b330052.txt">Table of n, a(n) for n = 0..50</a> %H A330052 Wikipedia, <a href="https://en.wikipedia.org/wiki/Degree_(graph_theory)">Degree (graph theory)</a> %F A330052 a(n) = A283877(n) - A330054(n). - _Andrew Howroyd_, Jan 27 2024 %e A330052 Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions: %e A330052 {1} {12} {123} {1234} {12345} %e A330052 {1}{2} {1}{12} {1}{123} {1}{1234} %e A330052 {1}{23} {12}{13} {12}{123} %e A330052 {1}{2}{3} {1}{234} {12}{134} %e A330052 {12}{34} {1}{2345} %e A330052 {1}{2}{13} {12}{345} %e A330052 {1}{2}{34} {1}{12}{13} %e A330052 {1}{2}{3}{4} {1}{12}{23} %e A330052 {1}{12}{34} %e A330052 {1}{2}{123} %e A330052 {1}{2}{134} %e A330052 {1}{2}{345} %e A330052 {1}{23}{45} %e A330052 {2}{13}{14} %e A330052 {1}{2}{3}{12} %e A330052 {1}{2}{3}{14} %e A330052 {1}{2}{3}{45} %e A330052 {1}{2}{3}{4}{5} %t A330052 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330052 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330052 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A330052 brute[{}]:={};brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]; %t A330052 Table[Length[Select[Union[brute/@Join@@mps/@strnorm[n]],UnsameQ@@#&&And@@UnsameQ@@@#&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}] %Y A330052 The complement is counted by A330054. %Y A330052 The multiset partition version is A330058. %Y A330052 Non-isomorphic set-systems with at least one singleton are A330053. %Y A330052 Non-isomorphic set-systems counted by vertices are A000612. %Y A330052 Non-isomorphic set-systems counted by weight are A283877. %Y A330052 Cf. A007716, A055621, A306005, A317533, A317794, A319559, A320665, A330055, A330056. %K A330052 nonn %O A330052 0,3 %A A330052 _Gus Wiseman_, Nov 30 2019 %E A330052 a(11) onwards from _Andrew Howroyd_, Jan 27 2024