This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330053 #18 Feb 10 2020 06:52:48 %S A330053 0,1,1,3,6,14,32,79,193,499,1321,3626,10275,30126,91062,284093,912866, %T A330053 3018825,10261530,35814255,128197595,470146011,1764737593,6773539331, %U A330053 26561971320,106330997834,434195908353,1807306022645,7663255717310,33079998762373 %N A330053 Number of non-isomorphic set-systems of weight n with at least one singleton. %C A330053 A set-system is a finite set of finite nonempty sets of positive integers. An singleton is an edge of size 1. The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %H A330053 Jean-François Alcover, <a href="/A330053/b330053.txt">Table of n, a(n) for n = 0..50</a> [using data from A283877 and A306005] %F A330053 a(n) = A283877(n) - A306005(n). - _Jean-François Alcover_, Feb 09 2020 %e A330053 Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset partitions: %e A330053 {1} {1}{2} {1}{12} {1}{123} {1}{1234} %e A330053 {1}{23} {1}{234} {1}{2345} %e A330053 {1}{2}{3} {1}{2}{12} {1}{12}{13} %e A330053 {1}{2}{13} {1}{12}{23} %e A330053 {1}{2}{34} {1}{12}{34} %e A330053 {1}{2}{3}{4} {1}{2}{123} %e A330053 {1}{2}{134} %e A330053 {1}{2}{345} %e A330053 {1}{23}{45} %e A330053 {2}{13}{14} %e A330053 {1}{2}{3}{12} %e A330053 {1}{2}{3}{14} %e A330053 {1}{2}{3}{45} %e A330053 {1}{2}{3}{4}{5} %t A330053 A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]]; %t A330053 A283877 = A@283877; %t A330053 A306005 = A@306005; %t A330053 a[n_] := A283877[[n + 1]] - A306005[[n + 1]]; %t A330053 a /@ Range[0, 50] (* _Jean-François Alcover_, Feb 09 2020 *) %Y A330053 The complement is counted by A306005. %Y A330053 The multiset partition version is A330058. %Y A330053 Non-isomorphic set-systems with at least one endpoint are A330052. %Y A330053 Non-isomorphic set-systems counted by vertices are A000612. %Y A330053 Non-isomorphic set-systems counted by weight are A283877. %Y A330053 Cf. A007716, A055621, A302545, A317533, A317794, A319559, A320665, A330055, A330056, A330057. %K A330053 nonn %O A330053 0,4 %A A330053 _Gus Wiseman_, Nov 30 2019