This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330055 #12 Jan 27 2024 14:08:53 %S A330055 1,0,0,0,0,0,1,1,3,5,16,24,90,179,567,1475,4623,13650,44475,144110, %T A330055 492017,1706956,6124330,22442687,84406276,324298231,1273955153, %U A330055 5106977701,20885538133,87046940269,369534837538,1596793560371,7019424870960,31374394197536,142514998263015 %N A330055 Number of non-isomorphic set-systems of weight n with no singletons or endpoints. %C A330055 A set-system is a finite set of finite nonempty set of positive integers. A singleton is an edge of size 1. An endpoint is a vertex appearing only once (degree 1). The weight of a set-system is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %H A330055 Andrew Howroyd, <a href="/A330055/b330055.txt">Table of n, a(n) for n = 0..50</a> %H A330055 Wikipedia, <a href="https://en.wikipedia.org/wiki/Degree_(graph_theory)">Degree (graph theory)</a> %e A330055 Non-isomorphic representatives of the a(7) = 1 through a(10) = 16 set-systems: %e A330055 {12}{13}{123} {12}{134}{234} {12}{134}{1234} {12}{1345}{2345} %e A330055 {12}{34}{1234} {123}{124}{134} {123}{124}{1234} %e A330055 {12}{13}{24}{34} {12}{13}{14}{234} {123}{145}{2345} %e A330055 {12}{13}{23}{123} {12}{345}{12345} %e A330055 {12}{13}{24}{134} {12}{13}{124}{134} %e A330055 {12}{13}{124}{234} %e A330055 {12}{13}{14}{1234} %e A330055 {12}{13}{24}{1234} %e A330055 {12}{13}{245}{345} %e A330055 {12}{13}{45}{2345} %e A330055 {12}{34}{123}{124} %e A330055 {12}{34}{125}{345} %e A330055 {12}{34}{135}{245} %e A330055 {13}{24}{123}{124} %e A330055 {12}{13}{14}{23}{24} %e A330055 {12}{13}{24}{35}{45} %o A330055 (PARI) %o A330055 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)} %o A330055 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A330055 K(q, t, k)={my(g=x*Ser(WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)))); (1-x)*g-subst(g,x,x^2)} %o A330055 S(q, t, k)={(x-x^2)*sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k)} %o A330055 a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(K(q, t, n\t)-S(q,t,n\t),x,x^t)/t )), n)); s/n!)} \\ _Andrew Howroyd_, Jan 27 2024 %Y A330055 The labeled version is A330056. %Y A330055 The "multi" version is A320665. %Y A330055 Non-isomorphic set-systems with no singletons are A306005. %Y A330055 Non-isomorphic set-systems with no endpoints are A330054. %Y A330055 Non-isomorphic set-systems counted by vertices are A000612. %Y A330055 Non-isomorphic set-systems counted by weight are A283877. %Y A330055 Cf. A007716, A055621, A302545, A317533, A317794, A319559, A321405, A330052, A330058. %K A330055 nonn %O A330055 0,9 %A A330055 _Gus Wiseman_, Nov 30 2019 %E A330055 a(11) onwards from _Andrew Howroyd_, Jan 27 2024