This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330058 #11 Jan 16 2023 04:33:36 %S A330058 0,1,2,7,21,68,214,706,2335,7968,27661,98366,357212,1326169,5027377, %T A330058 19459252,76850284,309531069,1270740646,5314727630,22633477157, %U A330058 98096319485,432490992805,1938762984374,8832924638252,40882143931620,192148753444380,916747097916418 %N A330058 Number of non-isomorphic multiset partitions of weight n with at least one endpoint. %C A330058 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %C A330058 An endpoint is a vertex appearing only once (degree 1). %C A330058 Also the number of non-isomorphic multiset partitions of weight n with at least one singleton. %H A330058 Andrew Howroyd, <a href="/A330058/b330058.txt">Table of n, a(n) for n = 0..50</a> %H A330058 Wikipedia, <a href="https://en.wikipedia.org/wiki/Degree_(graph_theory)">Degree (graph theory)</a> %F A330058 a(n) = A007716(n) - A302545(n). - _Andrew Howroyd_, Jan 15 2023 %e A330058 Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions: %e A330058 {1} {12} {122} {1222} %e A330058 {1}{2} {123} {1233} %e A330058 {1}{22} {1234} %e A330058 {1}{23} {1}{222} %e A330058 {2}{12} {12}{22} %e A330058 {1}{2}{2} {1}{233} %e A330058 {1}{2}{3} {12}{33} %e A330058 {1}{234} %e A330058 {12}{34} %e A330058 {13}{23} %e A330058 {2}{122} %e A330058 {3}{123} %e A330058 {1}{1}{23} %e A330058 {1}{2}{22} %e A330058 {1}{2}{33} %e A330058 {1}{2}{34} %e A330058 {1}{3}{23} %e A330058 {2}{2}{12} %e A330058 {1}{2}{2}{2} %e A330058 {1}{2}{3}{3} %e A330058 {1}{2}{3}{4} %Y A330058 The case of set-systems is A330053 (singletons) or A330052 (endpoints). %Y A330058 The complement is counted by A302545. %Y A330058 Cf. A007716, A283877, A306005, A330054, A330055, A330059. %K A330058 nonn %O A330058 0,3 %A A330058 _Gus Wiseman_, Nov 30 2019 %E A330058 Terms a(11) and beyond from _Andrew Howroyd_, Jan 15 2023