cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330074 Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x^k)).

This page as a plain text file.
%I A330074 #4 Nov 30 2019 18:34:37
%S A330074 1,1,3,14,78,544,4560,42468,451584,5382144,69737760,985265280,
%T A330074 15204119040,249602065920,4398839827200,82834744849920,
%U A330074 1646970433920000,34626184595251200,769149445849989120,17896198498368583680,437123791096022016000,11171177571932111462400
%N A330074 Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x^k)).
%F A330074 E.g.f.: Product_{j>=1} (1 + Sum_{i>=1} x^(i*j) / i).
%t A330074 nmax = 21; CoefficientList[Series[Product[1 - Log[1 - x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
%t A330074 nmax = 21; CoefficientList[Series[Product[(1 + Sum[x^(i j)/i, {i, 1, nmax}]), {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
%Y A330074 Cf. A000262, A053529, A178682.
%K A330074 nonn
%O A330074 0,3
%A A330074 _Ilya Gutkovskiy_, Nov 30 2019