cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330075 Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x^k) / k).

This page as a plain text file.
%I A330075 #4 Nov 30 2019 18:34:45
%S A330075 1,1,2,7,32,168,1184,8622,77216,747576,8185392,93054960,1264465872,
%T A330075 16974221184,254355732864,4069961945280,70258008510720,
%U A330075 1228263760984320,24025502406873600,470522155226595840,10095034628228958720,222277023267825254400,5144511652272759029760
%N A330075 Expansion of e.g.f. Product_{k>=1} (1 - log(1 - x^k) / k).
%F A330075 E.g.f.: Product_{j>=1} (1 + Sum_{i>=1} x^(i*j) / (i*j)).
%t A330075 nmax = 22; CoefficientList[Series[Product[1 - Log[1 - x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
%t A330075 nmax = 22; CoefficientList[Series[Product[(1 + Sum[x^(i j)/(i j), {i, 1, nmax}]), {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
%Y A330075 Cf. A000262, A178682, A330074.
%K A330075 nonn
%O A330075 0,3
%A A330075 _Ilya Gutkovskiy_, Nov 30 2019