This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330084 #18 Dec 11 2019 02:30:07 %S A330084 36,1,2,24,3,4,12,5,6,7,29,22,15,8,1,100,93,86,79,72,65,58,51,37,30, %T A330084 23,16,9,2,108,94,87,80,73,66,59,52,45,31,24,17,10,3,109,102,95,81,74, %U A330084 67,60,53,46,39,25,18,11,4,110,103,96,89,75,68,61,54,47,40 %N A330084 a(n) is the smallest k > 0 such that n occurs immediately after the decimal point in the decimal expansion of k*Pi. %C A330084 Any number occurring in this sequence occurs infinitely many times since the smallest such k for a specific n is also the smallest such k for all numbers formed by the concatenation of the initial digits after the decimal point in the decimal expansion of k*Pi. %C A330084 From A266242, only 36 appears in this sequence. - _Rémy Sigrist_, Dec 01 2019 %F A330084 a(n) = 1 iff n belongs to A039916. - _Rémy Sigrist_, Dec 01 2019 %e A330084 For n = 0: The decimal expansion of 36*Pi starts 113.097335529232... and this is the smallest multiple of Pi where 0 occurs immediately after the decimal point, so a(0) = 36. %t A330084 a[n_]:=(k=1;While[Floor[(Pi*k-Floor[Pi*k])*10^Length[IntegerDigits[n]]]!=n,k++];Return[k]);Table[a[n],{n,0,67}] (* _Joshua Oliver_, Dec 01 2019 *) %o A330084 (PARI) pidigits(multipl, len) = floor((Pi*multipl - floor(Pi*multipl)) * 10^len) %o A330084 a(n) = for(k=1, oo, if(pidigits(k, #Str(n))==n, return(k))) %Y A330084 Cf. A000796, A039916, A266242. %K A330084 nonn,base %O A330084 0,1 %A A330084 _Felix Fröhlich_, Dec 01 2019