A330097 MM-numbers of VDD-normalized multiset partitions.
1, 3, 7, 9, 13, 15, 19, 21, 27, 35, 37, 39, 45, 49, 53, 57, 63, 81, 89, 91, 95, 105, 111, 113, 117, 131, 133, 135, 141, 147, 151, 159, 161, 165, 169, 171, 183, 189, 195, 207, 223, 225, 243, 245, 247, 259, 265, 267, 273, 281, 285, 311, 315, 329, 333, 339, 343
Offset: 1
Keywords
Examples
The sequence of all VDD-normalized multiset partitions together with their MM-numbers begins: 1: 0 57: {1}{111} 151: {1122} 3: {1} 63: {1}{1}{11} 159: {1}{1111} 7: {11} 81: {1}{1}{1}{1} 161: {11}{22} 9: {1}{1} 89: {1112} 165: {1}{2}{3} 13: {12} 91: {11}{12} 169: {12}{12} 15: {1}{2} 95: {2}{111} 171: {1}{1}{111} 19: {111} 105: {1}{2}{11} 183: {1}{122} 21: {1}{11} 111: {1}{112} 189: {1}{1}{1}{11} 27: {1}{1}{1} 113: {123} 195: {1}{2}{12} 35: {2}{11} 117: {1}{1}{12} 207: {1}{1}{22} 37: {112} 131: {11111} 223: {11112} 39: {1}{12} 133: {11}{111} 225: {1}{1}{2}{2} 45: {1}{1}{2} 135: {1}{1}{1}{2} 243: {1}{1}{1}{1}{1} 49: {11}{11} 141: {1}{23} 245: {2}{11}{11} 53: {1111} 147: {1}{11}{11} 247: {12}{111} For example, 1155 is the MM-number of {{1},{2},{3},{1,1}}, which is VDD-normalized, so 1155 belongs to the sequence. On the other hand, 69 is the MM-number of {{1},{2,2}}, but the VDD-normalization is {{2},{1,1}}, so 69 does not belong to the sequence.
Crossrefs
Equals the odd terms of A330060.
A subset of A320634.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Cf. A000612, A055621, A056239, A112798, A283877, A316983, A317533, A320456, A330061, A330098, A330102, A330103, A330105.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- BII: A330109 (set-systems).
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]]; sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]]; Select[Range[1,100,2],Sort[primeMS/@primeMS[#]]==sysnorm[primeMS/@primeMS[#]]&]
Comments