cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330098 Number of distinct multisets of multisets that can be obtained by permuting the vertices of the multiset of multisets with MM-number n.

This page as a plain text file.
%I A330098 #5 Dec 10 2019 12:15:35
%S A330098 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T A330098 2,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,
%U A330098 2,2,2,1,1,2,2,1,2,2,1,1,1,1,1,1,1,1,2
%N A330098 Number of distinct multisets of multisets that can be obtained by permuting the vertices of the multiset of multisets with MM-number n.
%C A330098 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
%C A330098 a(n) is a divisor of A303975(n)!.
%e A330098 The vertex-permutations of {{1,2},{2,3,3}} are:
%e A330098   {{1,2},{1,3,3}}
%e A330098   {{1,2},{2,3,3}}
%e A330098   {{1,3},{1,2,2}}
%e A330098   {{1,3},{2,2,3}}
%e A330098   {{2,3},{1,1,2}}
%e A330098   {{2,3},{1,1,3}}
%e A330098 so a(4927) = 6.
%t A330098 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A330098 graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
%t A330098 Table[Length[graprms[primeMS/@primeMS[n]]],{n,100}]
%Y A330098 Positions of 1's are A330232.
%Y A330098 Positions of first appearances are A330230 and A330233.
%Y A330098 The BII-number version is A330231.
%Y A330098 Cf. A001055, A003238, A007716, A055621, A056239, A112798, A302242, A303975, A322847, A330194, A330218, A330223, A330227, A330236.
%K A330098 nonn
%O A330098 1,35
%A A330098 _Gus Wiseman_, Dec 09 2019