A330135 a(n) = ((10^(n+1))^4 - 1)/9999 for n >= 0.
1, 10001, 100010001, 1000100010001, 10001000100010001, 100010001000100010001, 1000100010001000100010001, 10001000100010001000100010001, 100010001000100010001000100010001
Offset: 0
Examples
a(2) = ((10^3)^4 - 1)/9999 = 100010001 = 10101 * 9901 where 10101 = A094028(2). a(3) = ((10^4)^4 - 1)/9999 = 1000100010001 = 10001 * 100000001 where 10001 = a(1). From _Omar E. Pol_, Dec 04 2019: (Start) Illustration of initial terms: 1; 10001; 100010001; 1000100010001; 10001000100010001; 100010001000100010001; 1000100010001000100010001; 10001000100010001000100010001; 100010001000100010001000100010001; ... (End)
References
- A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Pb 6 pp. 68 and 201 (1979).
Links
- Colin Barker, Table of n, a(n) for n = 0..200
- British Mathematical Olympiad, 1979 - Problem 6.
- Index entries for linear recurrences with constant coefficients, signature (10001,-10000).
Crossrefs
Programs
-
Maple
A: = seq((10^(4*n+4)-1)/9999, n=1..4);
-
Mathematica
Table[((10^(n+1))^4 - 1)/9999, {n, 0, 8}] (* Amiram Eldar, Dec 04 2019 *)
-
PARI
Vec(1 / ((1 - x)*(1 - 10000*x)) + O(x^11)) \\ Colin Barker, Dec 05 2019
Formula
a(n) = (10^(4*n+4) - 1)/9999 for n >= 0.
G.f.: 1 / ((1 - x)*(1 - 10000*x)). - Colin Barker, Dec 05 2019
Comments