cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330135 a(n) = ((10^(n+1))^4 - 1)/9999 for n >= 0.

Original entry on oeis.org

1, 10001, 100010001, 1000100010001, 10001000100010001, 100010001000100010001, 1000100010001000100010001, 10001000100010001000100010001, 100010001000100010001000100010001
Offset: 0

Views

Author

Bernard Schott, Dec 02 2019

Keywords

Comments

This sequence was the subject of the 6th problem of the 15th British Mathematical Olympiad in 1979 (see the link BMO).
There are no prime numbers in this infinite sequence. Why?
a(0) = 1 and a(1) = 10001 = 73 * 137;
if n even = 2*k, k >= 1, then A094028(n) divides a(n);
if n odd = 2*k+1, k >= 1, then a(k) divides a(n).

Examples

			a(2) = ((10^3)^4 - 1)/9999 = 100010001 = 10101 * 9901 where 10101 = A094028(2).
a(3) = ((10^4)^4 - 1)/9999 = 1000100010001 = 10001 * 100000001 where 10001 = a(1).
From _Omar E. Pol_, Dec 04 2019: (Start)
Illustration of initial terms:
                  1;
                10001;
              100010001;
            1000100010001;
          10001000100010001;
        100010001000100010001;
      1000100010001000100010001;
    10001000100010001000100010001;
  100010001000100010001000100010001;
...
(End)
		

References

  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Pb 6 pp. 68 and 201 (1979).

Crossrefs

Cf. A000533 (1000...0001), A094028 (10101...101), A261544 (1001001...1001).
Cf. A131865 (similar, with 2^(n+1)).

Programs

  • Maple
    A: = seq((10^(4*n+4)-1)/9999, n=1..4);
  • Mathematica
    Table[((10^(n+1))^4 - 1)/9999, {n, 0, 8}] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    Vec(1 / ((1 - x)*(1 - 10000*x)) + O(x^11)) \\ Colin Barker, Dec 05 2019

Formula

a(n) = (10^(4*n+4) - 1)/9999 for n >= 0.
G.f.: 1 / ((1 - x)*(1 - 10000*x)). - Colin Barker, Dec 05 2019