A330162 For imaginary fundamental discriminants -d, define b(-d) to be the smallest prime p such that Kronecker(-d,p) = 1. Sequence gives d such that b(-d)^3 > d/4 > b(-d)^2.
23, 31, 56, 59, 68, 83, 104, 107, 136, 139, 184, 211, 219, 244, 259, 264, 276, 283, 291, 292, 307, 328, 331, 339, 355, 376, 379, 388, 411, 424, 436, 451, 456, 472, 499, 523, 547, 552, 568, 580, 628, 643, 667, 712, 723, 763, 772, 787, 808, 820, 835, 843, 852, 868, 883
Offset: 1
Keywords
Examples
The smallest prime p such that Kronecker(-499,p) = 1 is p = 5, and 5^3 > 499/4 > 5^2, so 499 is a term.
Links
- Jianing Song, Table of n, a(n) for n = 1..810
Programs
-
PARI
b(D)=forprime(p=2, oo, if(kronecker(D, p)>0, return(p))) isA330162(d) = (d>0) && isfundamental(-d) && b(-d) > sqrtn(d/4,3) && b(-d) < sqrt(d/4)
Comments