This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330167 #19 Jan 07 2023 11:30:16 %S A330167 0,1,0,1,2,1,0,1,0,1,1,1,2,3,2,1,1,1,0,1,0,1,2,1,0,1,0,1,1,1,1,2,1,1, %T A330167 1,1,2,2,2,3,4,3,2,2,2,1,1,1,1,2,1,1,1,1,0,1,0,1,2,1,0,1,0,1,1,1,2,3, %U A330167 2,1,1,1,0,1,0,1,2,1,0,1,0,1,1,1,1,2,1,1,1,1,1 %N A330167 Length of the longest run of 1's in the ternary expression of n. %C A330167 All numbers appear in this sequence. Numbers of the form (3^n-1)/2 (A003462(n)) have n 1's in their ternary expression. %C A330167 The longest run of zeros possible in this sequence is 2, as the last digit of the ternary expression of the integers cycles between 0, 1, and 2, meaning that at least one of three consecutive numbers has a 1 in its ternary expression. %H A330167 Wikipedia, <a href="https://en.wikipedia.org/wiki/Ternary_numeral_system">Ternary numeral system</a>. %F A330167 a(A003462(n)) = a((3^n-1)/2) = n. %F A330167 a(n) = 0 iff n is in A005823. %e A330167 For n = 43, the ternary expression of 43 is 1121. The length of the runs of 1's in the ternary expression of 43 are 2 and 1, respectively. The larger of these two values is 2, so a(43) = 2. %e A330167 n [ternary n] a(n) %e A330167 0 [ 0] 0 %e A330167 1 [ 1] 1 %e A330167 2 [ 2] 0 %e A330167 3 [ 1 0] 1 %e A330167 4 [ 1 1] 2 %e A330167 5 [ 1 2] 1 %e A330167 6 [ 2 0] 0 %e A330167 7 [ 2 1] 1 %e A330167 8 [ 2 2] 0 %e A330167 9 [ 1 0 0] 1 %e A330167 10 [ 1 0 1] 1 %e A330167 11 [ 1 0 2] 1 %e A330167 12 [ 1 1 0] 2 %e A330167 13 [ 1 1 1] 3 %e A330167 14 [ 1 1 2] 2 %e A330167 15 [ 1 2 0] 1 %e A330167 16 [ 1 2 1] 1 %e A330167 17 [ 1 2 2] 1 %e A330167 18 [ 2 0 0] 0 %e A330167 19 [ 2 0 1] 1 %e A330167 20 [ 2 0 2] 0 %t A330167 Table[Max@FoldList[If[#2==1,#1+1,0]&,0,IntegerDigits[n,3]],{n,0,90}] %t A330167 Table[Max[Length/@Select[Split[IntegerDigits[n,3]],MemberQ[#,1]&]],{n,0,100}]/.(-\[Infinity]->0) (* _Harvey P. Dale_, Jan 07 2023 *) %Y A330167 Cf. A003462, A007089, A062756, A330036, A330166, A330168. %Y A330167 Equals zero iff n is in A005823. %K A330167 nonn,base %O A330167 0,5 %A A330167 _Joshua Oliver_, Dec 04 2019