cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330169 a(n) is the total area of all closed Deutsch paths of length n.

This page as a plain text file.
%I A330169 #59 Dec 19 2024 06:17:24
%S A330169 1,3,12,39,129,411,1300,4065,12633,39046,120204,368844,1128837,
%T A330169 3447303,10508592,31985085,97226733,295214316,895502520,2714106318,
%U A330169 8219809425,24877611798,75248738292,227488953354,687408882709,2076269682831,6268788729240,18920387069731,57086882549253
%N A330169 a(n) is the total area of all closed Deutsch paths of length n.
%C A330169 Deutsch paths are a variation of Dyck paths that allow for down-steps of arbitrary length.
%H A330169 Alois P. Heinz, <a href="/A330169/b330169.txt">Table of n, a(n) for n = 2..2096</a>
%H A330169 Helmut Prodinger, <a href="https://arxiv.org/abs/2003.01918">Deutsch paths and their enumeration</a>, arXiv:2003.01918 [math.CO], 2020. See p. 8.
%F A330169 G.f.: v^2*(1+v+v^2)^2/((1+v)^3*(1-v)^2) where v=(1-z-sqrt(1-2*z-3*z^2))/(2*z), that is, where v is the g.f. of A001006.
%p A330169 a:= proc(n) option remember;`if`(n<4, [0$2, 1, 3][n+1], (4*n*
%p A330169       a(n-1)+(2*n+4)*a(n-2)+12*(1-n)*a(n-3)+9*(1-n)*a(n-4))/(n+1))
%p A330169     end:
%p A330169 seq(a(n), n=2..30);  # _Alois P. Heinz_, Mar 05 2020
%t A330169 a = DifferenceRoot[Function[{y, n}, {9(n+3)y[n] + 12(n+3)y[n+1] - 2(n+6)y[n+2] - 4(n+4)y[n+3] + (n+5)y[n+4] == 0, y[2] == 1, y[3] == 3, y[4] == 12, y[5] == 39}]];
%t A330169 a /@ Range[2, 30] (* _Jean-François Alcover_, Mar 12 2020 *)
%o A330169 (PARI) my(z='z+O('z^30), v=(1-z-sqrt(1-2*z-3*z^2))/(2*z)); Vec(v^2*(1+v+v^2)^2/((1+v)^3*(1-v)^2))
%Y A330169 Cf. A001006 (Motzkin numbers), A005043, A333017, A333098.
%K A330169 nonn
%O A330169 2,2
%A A330169 _Michel Marcus_, Mar 05 2020