A330170 a(n) = 2^n + 3^n + 6^n - 1.
10, 48, 250, 1392, 8050, 47448, 282250, 1686432, 10097890, 60526248, 362976250, 2177317872, 13062296530, 78368963448, 470199366250, 2821153019712, 16926788715970, 101560344351048, 609360902796250, 3656161927895952, 21936961102828210
Offset: 1
Examples
a(9) = 2^9 + 3^9 + 6^9 - 1 = 10097890 = 11 * 917990.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- IMO, IMO 2005 - Problem 4
- Index entries for linear recurrences with constant coefficients, signature (12,-47,72,-36).
Programs
-
Maple
A330170 := seq(2^n+3^n+6^n-1, n=1..50);
-
Mathematica
Table[2^n + 3^n + 6^n - 1, {n, 1, 21}] (* Amiram Eldar, Dec 04 2019 *)
-
PARI
Vec(2*x*(5 - 36*x + 72*x^2 - 36*x^3) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 6*x)) + O(x^40)) \\ Colin Barker, Dec 04 2019
Formula
From Colin Barker, Dec 04 2019: (Start)
G.f.: 2*x*(5 - 36*x + 72*x^2 - 36*x^3) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 6*x)).
a(n) = 12*a(n-1) - 47*a(n-2) + 72*a(n-3) - 36*a(n-4) for n>5.
(End)
Comments