cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330170 a(n) = 2^n + 3^n + 6^n - 1.

Original entry on oeis.org

10, 48, 250, 1392, 8050, 47448, 282250, 1686432, 10097890, 60526248, 362976250, 2177317872, 13062296530, 78368963448, 470199366250, 2821153019712, 16926788715970, 101560344351048, 609360902796250, 3656161927895952, 21936961102828210
Offset: 1

Views

Author

Bernard Schott, Dec 04 2019

Keywords

Comments

This sequence is the subject of the 4th problem, proposed by Poland, of the 46th International Mathematical Olympiad in 2005 at Mérida (Mexico) [see the link IMO].
Answer to the question: 1 is the only positive integer that is relatively prime to every term of the sequence.
Proof: p=2 divides a(1) = 10, p=3 divides a(2) = 48, and if p prime >= 5, then p divides a(p-2). So, for every prime p, there exists n >= 1 such that p divides a(n).

Examples

			a(9) = 2^9 + 3^9 + 6^9 - 1 = 10097890 = 11 * 917990.
		

Crossrefs

Cf. A000079 (2^n), A000244 (3^n), A000400 (6^n), A318760 (a(p-2)/p).

Programs

  • Maple
    A330170 := seq(2^n+3^n+6^n-1, n=1..50);
  • Mathematica
    Table[2^n + 3^n + 6^n - 1, {n, 1, 21}] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    Vec(2*x*(5 - 36*x + 72*x^2 - 36*x^3) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 6*x)) + O(x^40)) \\ Colin Barker, Dec 04 2019

Formula

a(n) = A000079(n) + A000244(n) + A000400(n) - 1.
From Colin Barker, Dec 04 2019: (Start)
G.f.: 2*x*(5 - 36*x + 72*x^2 - 36*x^3) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 6*x)).
a(n) = 12*a(n-1) - 47*a(n-2) + 72*a(n-3) - 36*a(n-4) for n>5.
(End)