cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330190 Symmetric matrix read by antidiagonals: f(i,j) = 1 + gcd(f(i-1,j), f(i,j-1)), where f(1,j) and f(i,1) are 1.

This page as a plain text file.
%I A330190 #22 Aug 03 2022 23:25:08
%S A330190 1,1,1,1,2,1,1,2,2,1,1,2,3,2,1,1,2,2,2,2,1,1,2,3,3,3,2,1,1,2,2,4,4,2,
%T A330190 2,1,1,2,3,3,5,3,3,2,1,1,2,2,4,2,2,4,2,2,1,1,2,3,3,3,3,3,3,3,2,1,1,2,
%U A330190 2,4,4,4,4,4,4,2,2,1,1,2,3,3,5,5,5,5,5,3,3,2,1
%N A330190 Symmetric matrix read by antidiagonals: f(i,j) = 1 + gcd(f(i-1,j), f(i,j-1)), where f(1,j) and f(i,1) are 1.
%C A330190 This matrix when displayed in a gray scale, from least to greatest, forms spikes of increasing numbers because large sections of the antidiagonals are the same number. See examples section.
%H A330190 Michael De Vlieger, <a href="/A330190/b330190.txt">Table of n, a(n) for n = 1..11325</a> (Rows n = 1..150, flattened)
%H A330190 Nathaniel J. Strout, <a href="/A330190/a330190.png">1000 X 1000 grid</a>
%H A330190 Michael De Vlieger, <a href="/A330190/a330190_1.png">2048 X 2048 grid</a> with color function where black = 1, red = 2 and magenta represents the maximum value in the grid (i.e., f(312,768) = f(768,312) = 41).
%e A330190 An example of a triangle described in the comment:
%e A330190   ...........
%e A330190   ...........
%e A330190   ..........2
%e A330190   ........2 3
%e A330190   ......2 3 4
%e A330190   ....2 3 4 5
%e A330190 Array begins:
%e A330190   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e A330190   1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
%e A330190   1, 2, 3, 2, 3, 2, 3, 2, 3, 2, ...
%e A330190   1, 2, 2, 3, 4, 3, 4, 3, 4, 3, ...
%e A330190   1, 2, 3, 4, 5, 2, 3, 4, 5, 2, ...
%e A330190   1, 2, 2, 3, 2, 3, 4, 5, 6, 3, ...
%e A330190   1, 2, 3, 4, 3, 4, 5, 6, 7, 2, ...
%e A330190   1, 2, 2, 3, 4, 5, 6, 7, 8, 3, ...
%e A330190   1, 2, 3, 4, 5, 6, 7, 8, 9, 4, ...
%e A330190   1, 2, 2, 3, 2, 3, 2, 3, 4, 5, ...
%e A330190   ...
%t A330190 f[1, j_] := f[1, j] = 1; f[i_, 1] := f[i, 1] = 1; f[i_, j_] := f[i, j] = 1 + GCD[f[i - 1, j], f[i, j - 1]]; Table[f[m - k + 1, k], {m, 13}, {k, m, 1, -1}] // Flatten (* _Michael De Vlieger_, Aug 03 2022 *)
%o A330190 (PARI) T(n)={my(M=matrix(n,n,i,j,1)); for(i=2, n, for(j=2, n, M[i,j] = 1 + gcd(M[i-1,j], M[i,j-1]))); M}
%o A330190 { my(A=T(10)); for(i=1, #A, print(A[i,])) } \\ _Andrew Howroyd_, Jan 25 2020
%K A330190 nonn,tabl,look
%O A330190 1,5
%A A330190 _Nathaniel J. Strout_, Dec 04 2019