This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330210 #16 Oct 07 2024 14:06:05 %S A330210 10,14,16,18,20,22,24,26,28,30,32,38,40,44,48,52,54,56,62,64,68,70,74, %T A330210 76,78,82,86,94,96,98,104,112,124,128,130,136,140,144,148,156,158,164, %U A330210 168,174,176,178,186,188,192,194,198,206,208,210,216,218,222,224 %N A330210 Numbers that can be expressed as the sum of 2 prime numbers in a prime number of different ways. %e A330210 24 can be expressed as the sum of 2 prime numbers in 3 different ways (5+19, 7+17, and 11+13), and 3 is prime. %t A330210 Select[Range[2, 224, 2], PrimeQ@ Length@ IntegerPartitions[#, {2}, Prime@ Range@ PrimePi@ #] &] (* _Giovanni Resta_, Dec 06 2019 *) %o A330210 (Python) %o A330210 import math %o A330210 from sympy import isprime %o A330210 def main(n): %o A330210 x = {} %o A330210 a = 1 %o A330210 b = 1 %o A330210 for i in range(2, n): %o A330210 x[i] = [] %o A330210 while a < i: %o A330210 if a + b == i: %o A330210 x[i].append(str(a) + "+" + str(b)) %o A330210 b += 1 %o A330210 if b == i: %o A330210 a += 1 %o A330210 b = 1 %o A330210 a = 1 %o A330210 b = 1 %o A330210 for i in x: %o A330210 x[i] = x[i][0:math.ceil(len(x[i])/2)] %o A330210 x[2] = ["1+1"] %o A330210 newdict = {} %o A330210 for i in x: %o A330210 newdict[i] = [] %o A330210 for j in x[i]: %o A330210 if isprime(int(j.split("+")[0])) and isprime(int(j.split("+")[1])): %o A330210 newdict[i].append(j) %o A330210 finaloutput = [] %o A330210 for i in newdict: %o A330210 if isprime(len(newdict[i])): %o A330210 finaloutput.append(i) %o A330210 return finaloutput %o A330210 def a(n): %o A330210 x = 0 %o A330210 while len(main(x)) != n: %o A330210 x += 1 %o A330210 return main(x)[-1] %Y A330210 Cf. A000040, A014091, A061358. %K A330210 nonn %O A330210 1,1 %A A330210 _Pietro Saia_, Dec 05 2019