A330217 BII-numbers of achiral set-systems.
0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 16, 25, 32, 42, 52, 63, 64, 75, 116, 127, 128, 129, 130, 131, 136, 137, 138, 139, 256, 385, 512, 642, 772, 903, 1024, 1155, 1796, 1927, 2048, 2184, 2320, 2457, 2592, 2730, 2868, 3007, 4096, 4233, 6416, 6553, 8192, 8330
Offset: 1
Keywords
Examples
The sequence of all achiral set-systems together with their BII-numbers begins: 1: {{1}} 2: {{2}} 3: {{1},{2}} 4: {{1,2}} 7: {{1},{2},{1,2}} 8: {{3}} 9: {{1},{3}} 10: {{2},{3}} 11: {{1},{2},{3}} 16: {{1,3}} 25: {{1},{3},{1,3}} 32: {{2,3}} 42: {{2},{3},{2,3}} 52: {{1,2},{1,3},{2,3}} 63: {{1},{2},{3},{1,2},{1,3},{2,3}} 64: {{1,2,3}} 75: {{1},{2},{3},{1,2,3}}
Crossrefs
These are numbers n such that A330231(n) = 1.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
BII-numbers of fully chiral set-systems are A330226.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; Select[Range[0,1000],Length[graprms[bpe/@bpe[#]]]==1&]
Comments