A330221 Numbers d such that -d is a fundamental discriminant and all primes smaller than 2*sqrt(d)/Pi ramify or remain inert in the ring of integers of Q(sqrt(-d)).
3, 4, 7, 8, 11, 19, 20, 24, 40, 43, 51, 52, 67, 88, 115, 120, 123, 148, 163, 168, 228, 232, 235, 267, 280, 312, 372, 408, 427, 520, 708, 760, 840, 1320, 1848
Offset: 1
Examples
For d = 708, the primes below 2*sqrt(708)/Pi ~ 16.94 are 2, 3, 5, 7, 11 and 13. We have 2, 3 | -708, Kronecker(-708,5) = Kronecker(-708,7) = Kronecker(-708,11) = Kronecker(-708,13) = -1, so 708 is a term.
Links
- Wikipedia, Minkowski's bound
Crossrefs
Cf. A003644.
Programs
-
PARI
isA330221(d) = (d>0) && isfundamental(-d) && !sum(p=2, 2*sqrt(d)/Pi, isprime(p)&&kronecker(-d,p)==1)
Comments