This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330225 #9 Mar 28 2020 13:08:37 %S A330225 1,3,5,7,11,13,17,19,23,29,31,35,41,43,47,53,59,61,67,71,73,79,83,89, %T A330225 97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179, %U A330225 181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271 %N A330225 Position of first appearance of n in A290103 = LCM of prime indices. %C A330225 Appears to be the prime numbers (A000040) with 2 replaced by 1 and 37 replaced by 35. %C A330225 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %t A330225 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A330225 q=Table[If[n==1,1,LCM@@primeMS[n]],{n,100}]; %t A330225 Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}] %Y A330225 The version for product instead of lcm is A318871 %Y A330225 The version for standard compositions is A333225. %Y A330225 The version for binary indices is A333492. %Y A330225 Let q(k) be the prime indices of k: %Y A330225 - The product of q(k) is A003963(k). %Y A330225 - The sum of q(k) is A056239(k). %Y A330225 - The terms of q(k) are row k of A112798. %Y A330225 - The GCD of q(k) is A289508(k). %Y A330225 - The LCM of q(k) is A290103(k). %Y A330225 - The LCM of q(k) + 1 is A328219(k). %Y A330225 Cf. A000837, A074761, A074971, A076078, A285572, A289509, A290104, A319333, A324837, A328451, A331579, A333226. %K A330225 nonn %O A330225 1,2 %A A330225 _Gus Wiseman_, Mar 26 2020