cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330226 BII-numbers of fully chiral set-systems.

Original entry on oeis.org

0, 1, 2, 5, 6, 8, 13, 14, 17, 19, 22, 23, 24, 26, 28, 29, 34, 35, 37, 39, 40, 41, 44, 46, 49, 50, 57, 58, 69, 70, 77, 78, 81, 83, 86, 87, 88, 90, 92, 93, 98, 99, 101, 103, 104, 105, 108, 110, 113, 114, 121, 122, 128, 133, 134, 145, 150, 151, 152, 156, 157, 162
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the vertices gives a different representative.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all fully chiral set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  17: {{1},{1,3}}
  19: {{1},{2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  24: {{3},{1,3}}
  26: {{2},{3},{1,3}}
  28: {{3},{1,2},{1,3}}
  29: {{1},{3},{1,2},{1,3}}
  34: {{2},{2,3}}
  35: {{1},{2},{2,3}}
  37: {{1},{1,2},{2,3}}
  39: {{1},{2},{1,2},{2,3}}
For example, 28 is in the sequence because all six permutations give different representatives, namely:
  {{1},{1,2},{2,3}}
  {{1},{1,3},{2,3}}
  {{2},{1,2},{1,3}}
  {{2},{1,3},{2,3}}
  {{3},{1,2},{1,3}}
  {{3},{1,2},{2,3}}
		

Crossrefs

A subset of A326947.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic, fully chiral multiset partitions are A330227.
Fully chiral partitions are counted by A330228.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Select[Range[0,100],Length[graprms[bpe/@bpe[#]]]==Length[Union@@bpe/@bpe[#]]!&]