This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330227 #7 Dec 08 2019 20:55:10 %S A330227 1,1,2,7,16,49,144,447,1417,4707 %N A330227 Number of non-isomorphic fully chiral multiset partitions of weight n. %C A330227 A multiset partition is fully chiral if every permutation of the vertices gives a different representative. The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %e A330227 Non-isomorphic representatives of the a(1) = 1 through a(4) = 16 multiset partitions: %e A330227 {1} {11} {111} {1111} %e A330227 {1}{1} {122} {1222} %e A330227 {1}{11} {1}{111} %e A330227 {1}{22} {11}{11} %e A330227 {2}{12} {1}{122} %e A330227 {1}{1}{1} {1}{222} %e A330227 {1}{2}{2} {12}{22} %e A330227 {1}{233} %e A330227 {2}{122} %e A330227 {1}{1}{11} %e A330227 {1}{1}{22} %e A330227 {1}{2}{22} %e A330227 {1}{3}{23} %e A330227 {2}{2}{12} %e A330227 {1}{1}{1}{1} %e A330227 {1}{2}{2}{2} %Y A330227 MM-numbers of these multiset partitions are the odd terms of A330236. %Y A330227 Non-isomorphic costrict (or T_0) multiset partitions are A316980. %Y A330227 Non-isomorphic achiral multiset partitions are A330223. %Y A330227 BII-numbers of fully chiral set-systems are A330226. %Y A330227 Fully chiral partitions are counted by A330228. %Y A330227 Fully chiral covering set-systems are A330229. %Y A330227 Fully chiral factorizations are A330235. %Y A330227 Cf. A000612, A001055, A007716, A055621, A283877, A317533, A322847, A330098, A330232. %K A330227 nonn,more %O A330227 0,3 %A A330227 _Gus Wiseman_, Dec 08 2019