This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330228 #4 Dec 09 2019 07:27:57 %S A330228 1,1,2,3,5,6,9,12,18,25,33,45,61,80,106,140,176,232,293,381,476,615, %T A330228 764,975,1191,1511,1849,2322,2812,3517,4231,5240,6297,7736,9260,11315, %U A330228 13468,16378,19485,23531,27851,33525,39585,47389,55844,66517,78169,92810 %N A330228 Number of fully chiral integer partitions of n. %C A330228 A multiset partition is fully chiral if every permutation of the vertices gives a different representative. An integer partition is fully chiral if taking the multiset of prime indices of each part gives a fully chiral multiset of multisets. %e A330228 The a(1) = 1 through a(7) = 12 partitions: %e A330228 (1) (2) (3) (4) (5) (33) (7) %e A330228 (11) (21) (22) (41) (42) (43) %e A330228 (111) (31) (221) (51) (322) %e A330228 (211) (311) (222) (331) %e A330228 (1111) (2111) (411) (421) %e A330228 (11111) (2211) (511) %e A330228 (3111) (2221) %e A330228 (21111) (4111) %e A330228 (111111) (22111) %e A330228 (31111) %e A330228 (211111) %e A330228 (1111111) %t A330228 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A330228 graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; %t A330228 Table[Length[Select[IntegerPartitions[n],Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]],{n,0,15}] %Y A330228 The Heinz numbers of these partitions are given by A330236. %Y A330228 Costrict (or T_0) partitions are A319564. %Y A330228 Achiral partitions are A330224. %Y A330228 BII-numbers of fully chiral set-systems are A330226. %Y A330228 Non-isomorphic, fully chiral multiset partitions are A330227. %Y A330228 Fully chiral covering set-systems are A330229. %Y A330228 Fully chiral factorizations are A330235. %Y A330228 Cf. A001055, A007716, A322847, A330098, A330223. %K A330228 nonn %O A330228 0,3 %A A330228 _Gus Wiseman_, Dec 08 2019