This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330229 #9 Dec 13 2019 19:46:37 %S A330229 1,1,2,42,21336 %N A330229 Number of fully chiral set-systems covering n vertices. %C A330229 A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the vertices gives a different representative. %F A330229 Binomial transform is A330282. %e A330229 The a(3) = 42 set-systems: %e A330229 {1}{2}{13} {1}{2}{12}{13} {1}{2}{12}{13}{123} %e A330229 {1}{2}{23} {1}{2}{12}{23} {1}{2}{12}{23}{123} %e A330229 {1}{3}{12} {1}{3}{12}{13} {1}{3}{12}{13}{123} %e A330229 {1}{3}{23} {1}{3}{13}{23} {1}{3}{13}{23}{123} %e A330229 {2}{3}{12} {2}{3}{12}{23} {2}{3}{12}{23}{123} %e A330229 {2}{3}{13} {2}{3}{13}{23} {2}{3}{13}{23}{123} %e A330229 {1}{12}{23} {1}{2}{13}{123} %e A330229 {1}{13}{23} {1}{2}{23}{123} %e A330229 {2}{12}{13} {1}{3}{12}{123} %e A330229 {2}{13}{23} {1}{3}{23}{123} %e A330229 {3}{12}{13} {2}{3}{12}{123} %e A330229 {3}{12}{23} {2}{3}{13}{123} %e A330229 {1}{12}{123} {1}{12}{23}{123} %e A330229 {1}{13}{123} {1}{13}{23}{123} %e A330229 {2}{12}{123} {2}{12}{13}{123} %e A330229 {2}{23}{123} {2}{13}{23}{123} %e A330229 {3}{13}{123} {3}{12}{13}{123} %e A330229 {3}{23}{123} {3}{12}{23}{123} %t A330229 graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; %t A330229 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[graprms[#]]==n!&]],{n,0,3}] %Y A330229 The non-covering version is A330282. %Y A330229 Costrict (or T_0) covering set-systems are A059201. %Y A330229 BII-numbers of fully chiral set-systems are A330226. %Y A330229 Non-isomorphic, fully chiral multiset partitions are A330227. %Y A330229 Fully chiral partitions are counted by A330228. %Y A330229 Fully chiral covering set-systems are A330229. %Y A330229 Fully chiral factorizations are A330235. %Y A330229 MM-numbers of fully chiral multisets of multisets are A330236. %Y A330229 Cf. A000612, A055621, A083323, A283877, A319559, A319564, A330224, A330234. %K A330229 nonn,more %O A330229 0,3 %A A330229 _Gus Wiseman_, Dec 08 2019