A330231 Number of distinct set-systems that can be obtained by permuting the vertices of the set-system with BII-number n.
1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 6, 6, 3, 1, 2, 3, 6, 3, 3, 6, 6, 2, 1, 6, 3, 6, 6, 3, 3, 1, 3, 2, 6, 3, 6, 3, 6, 2, 6, 1, 3, 6, 3, 6, 3, 3, 6, 6, 3, 1, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 1, 3, 6, 6, 3, 3, 6, 3, 6, 3, 3, 6
Offset: 0
Keywords
Examples
30 is the MM-number of {{2},{3},{1,2},{1,3}}, with vertex permutations {{1},{2},{1,3},{2,3}} {{1},{3},{1,2},{2,3}} {{2},{3},{1,2},{1,3}} so a(30) = 3.
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; Table[Length[graprms[bpe/@bpe[n]]],{n,0,100}]
Formula
a(n) is a divisor of A326702(n)!.
Comments