This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330234 #10 Mar 26 2020 20:41:59 %S A330234 1,1,1,2,1,2,1,3,2,2,1,0,1,2,2,5,1,0,1,0,2,2,1,0,2,2,3,0,1,2,1,7,2,2, %T A330234 2,5,1,2,2,0,1,2,1,0,0,2,1,0,2,0,2,0,1,0,2,0,2,2,1,0,1,2,0,11,2,2,1,0, %U A330234 2,2,1,0,1,2,0,0,2,2,1,0,5,2,1,0,2,2,2 %N A330234 Number of achiral factorizations of n into factors > 1. %C A330234 A multiset of multisets is achiral if it is not changed by any permutation of the vertices. A factorization is achiral if taking the multiset of prime indices of each factor gives an achiral multiset of multisets. %e A330234 The a(n) factorizations for n = 2, 6, 27, 36, 243, 216: %e A330234 (2) (6) (27) (36) (243) (216) %e A330234 (2*3) (3*9) (4*9) (3*81) (6*36) %e A330234 (3*3*3) (6*6) (9*27) (8*27) %e A330234 (2*3*6) (3*9*9) (12*18) %e A330234 (2*2*3*3) (3*3*27) (4*6*9) %e A330234 (3*3*3*9) (6*6*6) %e A330234 (3*3*3*3*3) (2*3*36) %e A330234 (2*3*4*9) %e A330234 (2*3*6*6) %e A330234 (2*2*3*3*6) %e A330234 (2*2*2*3*3*3) %t A330234 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A330234 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A330234 graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; %t A330234 Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==1&]],{n,100}] %Y A330234 The fully chiral version is A330235. %Y A330234 Planted achiral trees are A003238. %Y A330234 Achiral set-systems are counted by A083323. %Y A330234 BII-numbers of achiral set-systems are A330217. %Y A330234 Non-isomorphic achiral multiset partitions are A330223. %Y A330234 Achiral integer partitions are counted by A330224. %Y A330234 MM-numbers of achiral multisets of multisets are A330232. %Y A330234 Cf. A001055, A007716, A112798, A317533, A330098, A330227, A330228, A330236. %K A330234 nonn %O A330234 1,4 %A A330234 _Gus Wiseman_, Dec 08 2019