This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330235 #5 Dec 09 2019 07:28:30 %S A330235 1,1,1,2,1,0,1,3,2,0,1,4,1,0,0,5,1,4,1,4,0,0,1,7,2,0,3,4,1,0,1,7,0,0, %T A330235 0,4,1,0,0,7,1,0,1,4,4,0,1,12,2,4,0,4,1,7,0,7,0,0,1,4,1,0,4,11,0,0,1, %U A330235 4,0,0,1,16,1,0,4,4,0,0,1,12,5,0,1,4,0,0 %N A330235 Number of fully chiral factorizations of n. %C A330235 A multiset of multisets is fully chiral every permutation of the vertices gives a different representative. A factorization is fully chiral if taking the multiset of prime indices of each factor gives a fully chiral multiset of multisets. %e A330235 The a(n) factorizations for n = 1, 4, 8, 12, 16, 24, 48: %e A330235 () (4) (8) (12) (16) (24) (48) %e A330235 (2*2) (2*4) (2*6) (2*8) (3*8) (6*8) %e A330235 (2*2*2) (3*4) (4*4) (4*6) (2*24) %e A330235 (2*2*3) (2*2*4) (2*12) (3*16) %e A330235 (2*2*2*2) (2*2*6) (4*12) %e A330235 (2*3*4) (2*3*8) %e A330235 (2*2*2*3) (2*4*6) %e A330235 (3*4*4) %e A330235 (2*2*12) %e A330235 (2*2*2*6) %e A330235 (2*2*3*4) %e A330235 (2*2*2*2*3) %t A330235 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A330235 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A330235 graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; %t A330235 Table[Length[Select[facs[n],Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]],{n,100}] %Y A330235 The costrict (or T_0) version is A316978. %Y A330235 The achiral version is A330234. %Y A330235 Planted achiral trees are A003238. %Y A330235 BII-numbers of fully chiral set-systems are A330226. %Y A330235 Non-isomorphic fully chiral multiset partitions are A330227. %Y A330235 Full chiral partitions are A330228. %Y A330235 Fully chiral covering set-systems are A330229. %Y A330235 MM-numbers of fully chiral multisets of multisets are A330236. %Y A330235 Cf. A001055, A007716, A083323, A112798, A317533, A330098, A330223, A330224, A330232. %K A330235 nonn %O A330235 1,4 %A A330235 _Gus Wiseman_, Dec 08 2019