A330236 MM-numbers of fully chiral multisets of multisets.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 53, 54, 56, 57, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83
Offset: 1
Keywords
Examples
The sequence of all fully chiral multisets of multisets together with their MM-numbers begins: 1: 18: {}{1}{1} 37: {112} 57: {1}{111} 2: {} 19: {111} 38: {}{111} 59: {7} 3: {1} 20: {}{}{2} 39: {1}{12} 61: {122} 4: {}{} 21: {1}{11} 40: {}{}{}{2} 62: {}{5} 5: {2} 22: {}{3} 41: {6} 63: {1}{1}{11} 6: {}{1} 23: {22} 42: {}{1}{11} 64: {}{}{}{}{}{} 7: {11} 24: {}{}{}{1} 44: {}{}{3} 65: {2}{12} 8: {}{}{} 25: {2}{2} 45: {1}{1}{2} 67: {8} 9: {1}{1} 27: {1}{1}{1} 46: {}{22} 68: {}{}{4} 10: {}{2} 28: {}{}{11} 48: {}{}{}{}{1} 69: {1}{22} 11: {3} 31: {5} 49: {11}{11} 70: {}{2}{11} 12: {}{}{1} 32: {}{}{}{}{} 50: {}{2}{2} 71: {113} 14: {}{11} 34: {}{4} 53: {1111} 72: {}{}{}{1}{1} 16: {}{}{}{} 35: {2}{11} 54: {}{1}{1}{1} 74: {}{112} 17: {4} 36: {}{}{1}{1} 56: {}{}{}{11} 75: {1}{2}{2} The complement starts: {13, 15, 26, 29, 30, 33, 43, 47, 51, 52, 55, 58, 60, 66, 73, 79, 85, 86, 93, 94}.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; Select[Range[100],Length[graprms[primeMS/@primeMS[#]]]==Length[Union@@primeMS/@primeMS[#]]!&]
Comments