A330240 Square array T(n,k): concatenate the absolute differences of the digits of n and k (the smaller one padded with leading zeros), read by antidiagonals, n, k >= 0.
0, 1, 1, 2, 0, 2, 3, 1, 1, 3, 4, 2, 0, 2, 4, 5, 3, 1, 1, 3, 5, 6, 4, 2, 0, 2, 4, 6, 7, 5, 3, 1, 1, 3, 5, 7, 8, 6, 4, 2, 0, 2, 4, 6, 8, 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, 0, 2, 4, 6, 8, 10, 11, 11, 7, 5, 3, 1, 1, 3, 5, 7, 11, 11, 12, 10, 12, 6, 4, 2, 0, 2, 4, 6, 12, 10, 12, 13, 11, 11, 13, 5, 3, 1, 1, 3, 5, 13, 11, 11, 13, 14, 12, 10, 12, 14, 4, 2, 0, 2, 4, 14, 12, 10, 12, 14
Offset: 0
Examples
The square array starts as follows: n |k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... ---+------------------------------------------------------------- 0 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... 1 | 1 0 1 2 3 4 5 6 7 8 11 10 11 12 13 14 15 16 17 ... 2 | 2 1 0 1 2 3 4 5 6 7 12 11 10 11 12 13 14 15 16 ... 3 | 3 2 1 0 1 2 3 4 5 6 13 12 11 10 11 12 13 14 15 ... 4 | 4 3 2 1 0 1 2 3 4 5 14 13 12 11 10 11 12 13 14 ... 5 | 5 4 3 2 1 0 1 2 3 4 15 14 13 12 11 10 11 12 13 ... 6 | 6 5 4 3 2 1 0 1 2 3 16 15 14 13 12 11 10 11 12 ... 7 | 7 6 5 4 3 2 1 0 1 2 17 16 15 14 13 12 11 10 11 ... 8 | 8 7 6 5 4 3 2 1 0 1 18 17 16 15 14 13 12 11 10 ... 9 | 9 8 7 6 5 4 3 2 1 0 19 18 17 16 15 14 13 12 11 ... 10 | 10 11 12 13 14 15 16 17 18 19 0 1 2 3 4 5 6 7 8 ... 11 | 11 10 11 12 13 14 15 16 17 18 1 0 1 2 3 4 5 6 7 ... 12 | 12 11 10 11 12 13 14 15 16 17 2 1 0 1 2 3 4 5 6 ... (...) It differs from A049581 only if at least one index is > 9. The table of commutators Comm(n,k) := T(T(T(n,k),n),k) reads as follows: n |k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22... ---+--------------------------------------------------------------- 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0... 1 | 0 0 2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 2 2 2 0 0 2... 2 | 0 0 0 2 4 4 4 4 4 4 0 0 0 2 4 4 4 4 4 4 0 0 0... 3 | 0 0 0 0 2 4 6 6 6 6 0 0 0 0 2 4 6 6 6 6 0 0 0... 4 | 0 0 0 0 0 2 4 6 8 8 0 0 0 0 0 2 4 6 8 8 0 0 0... 5 | 0 0 0 0 0 0 2 4 6 8 0 0 0 0 0 0 2 4 6 8 0 0 0... 6 | 0 0 0 0 0 0 0 2 4 6 0 0 0 0 0 0 0 2 4 6 0 0 0... 7 | 0 0 0 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 2 4 0 0 0... 8 | 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0... 9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0... 10 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 20... 11 | 0 0 2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 2 2 2 20 20 22... 12 | 0 0 0 2 4 4 4 4 4 4 0 0 0 2 4 4 4 4 4 4 20 20 20... (...) Up to row & column 10, the columns are twice the sequence A053616 written as triangle. The first 10 X 10 block repeats horizontally and vertically. Further away from the origin, the elements of this block multiplied by corresponding powers of 10 are added to the corresponding 10 X 10 blocks: e.g., the block Comm(130..139,270..279) = Comm(0..9,0..9) + 260, where 260 = 100*Comm(1,2) + 10*Comm(3,7).
Links
- Eric Angelini, The box ■ operation, personal blog "Cinquante signes", and post to the SeqFan list, Dec 06 2019.
- Eric Angelini, The box ■ operation, personal blog "Cinquante signes", and post to the SeqFan list, Dec 06 2019. [Cached copy]
Crossrefs
Programs
-
PARI
A330240(a,b)=fromdigits(abs(Vec(digits(min(a,b)),if(a+b,-logint(a=max(a,b),10)-1))-digits(a)))
Comments