A330276 NSW pseudoprimes: odd composite numbers k such that A002315((k-1)/2) == 1 (mod k).
169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, 10945, 11285, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, 37505, 38081, 39059, 42127, 45451, 45961, 47321, 49105, 52633, 53041, 55969, 56953, 58241
Offset: 1
Keywords
Examples
169 = 13^2 is a term since it is composite and A002315((169-1)/2) - 1 = A002315(84) - 1 is divisible by 169.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- Morris Newman, Daniel Shanks, and H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arithmetica, Vol. 38, No. 2 (1980), pp. 129-140.
Programs
-
Mathematica
a0 = 1; a1 = 7; k = 5; seq = {}; Do[a = 6 a1 - a0; a0 = a1; a1 = a; If[CompositeQ[k] && Divisible[a - 1, k], AppendTo[seq, k]]; k += 2, {n, 2, 10^4}]; seq
Comments