cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330276 NSW pseudoprimes: odd composite numbers k such that A002315((k-1)/2) == 1 (mod k).

Original entry on oeis.org

169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, 10945, 11285, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, 37505, 38081, 39059, 42127, 45451, 45961, 47321, 49105, 52633, 53041, 55969, 56953, 58241
Offset: 1

Views

Author

Amiram Eldar, Dec 08 2019

Keywords

Comments

If p is an odd prime, then A002315((p-1)/2) == 1 (mod p). This sequence consists of the odd composite numbers for which this congruence holds.
Equivalently, odd composite numbers k such that A001652((k-1)/2) is divisible by k.

Examples

			169 = 13^2 is a term since it is composite and A002315((169-1)/2) - 1 = A002315(84) - 1 is divisible by 169.
		

Crossrefs

Programs

  • Mathematica
    a0 = 1; a1 = 7; k = 5; seq = {}; Do[a = 6 a1 - a0; a0 = a1; a1 = a; If[CompositeQ[k] && Divisible[a - 1, k], AppendTo[seq, k]]; k += 2, {n, 2, 10^4}]; seq