This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330282 #11 Jan 05 2020 12:02:55 %S A330282 1,2,5,52,21521 %N A330282 Number of fully chiral set-systems on n vertices. %C A330282 A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative. %F A330282 Binomial transform of A330229. %e A330282 The a(0) = 1 through a(2) = 5 set-systems: %e A330282 {} {} {} %e A330282 {{1}} {{1}} %e A330282 {{2}} %e A330282 {{1},{1,2}} %e A330282 {{2},{1,2}} %t A330282 graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; %t A330282 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Length[graprms[#]]==Length[Union@@#]!&]],{n,0,3}] %Y A330282 Costrict (or T_0) set-systems are A326940. %Y A330282 The covering case is A330229. %Y A330282 The unlabeled version is A330294, with covering case A330295. %Y A330282 Achiral set-systems are A083323. %Y A330282 BII-numbers of fully chiral set-systems are A330226. %Y A330282 Non-isomorphic fully chiral multiset partitions are A330227. %Y A330282 Fully chiral partitions are A330228. %Y A330282 Fully chiral factorizations are A330235. %Y A330282 MM-numbers of fully chiral multisets of multisets are A330236. %Y A330282 Cf. A000612, A016031, A319637, A330098, A330231, A330232, A330234. %K A330282 nonn,more %O A330282 0,2 %A A330282 _Gus Wiseman_, Dec 10 2019