cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330285 The maximum number of arithmetic progressions in a sequence of length n.

Original entry on oeis.org

0, 0, 1, 3, 7, 12, 20, 29, 41, 55, 72, 90, 113, 137, 164, 194, 228, 263, 303, 344, 390, 439, 491, 544, 604, 666, 731, 799, 872, 946, 1027, 1109, 1196, 1286, 1379, 1475, 1579, 1684, 1792, 1903, 2021, 2140, 2266, 2393, 2525, 2662, 2802, 2943, 3093, 3245, 3402, 3562, 3727
Offset: 1

Views

Author

Joseph Wheat, Dec 21 2019

Keywords

Comments

The partial arithmetic density D_n(A) up to n is merely the number of arithmetic progressions, A(s(n)), divided by the total number of nonempty subsets of {s(1), s(2), ..., s(n)}, i.e., A(s(n))/(2^n - 1). As n approaches infinity, D_n(A) converges to zero. Furthermore, the infinite sum of the partial densities for any sequence always converges to the total density D(A). Every infinite arithmetic progression has the same total density, Sum_{n >= 1} a(n)/(2^n - 1) = alpha ~ 1.25568880818612911696845537; sequences with a finite number of progressions have D(A) < alpha; and sequences without any arithmetic progressions have D(A) = 0.

Crossrefs

Partial sums of A002541.

Programs

  • PARI
    a(n) = sum(i=1, n, sum(j=1, i, floor((i - 1)/(j + 1))))

Formula

a(n) = Sum_{i=1..n} Sum_{j=1..i} floor((i - 1)/(j + 1)).