cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330294 Number of non-isomorphic fully chiral set-systems on n vertices.

This page as a plain text file.
%I A330294 #11 Jan 05 2020 12:03:02
%S A330294 1,2,3,10,899
%N A330294 Number of non-isomorphic fully chiral set-systems on n vertices.
%C A330294 A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.
%e A330294 Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
%e A330294   0  0    0        0
%e A330294      {1}  {1}      {1}
%e A330294           {2}{12}  {2}{12}
%e A330294                    {1}{3}{23}
%e A330294                    {2}{13}{23}
%e A330294                    {3}{23}{123}
%e A330294                    {2}{3}{13}{23}
%e A330294                    {1}{3}{23}{123}
%e A330294                    {2}{13}{23}{123}
%e A330294                    {2}{3}{13}{23}{123}
%Y A330294 The labeled version is A330282.
%Y A330294 Partial sums of A330295 (the covering case).
%Y A330294 Unlabeled costrict (or T_0) set-systems are A326946.
%Y A330294 BII-numbers of fully chiral set-systems are A330226.
%Y A330294 Non-isomorphic fully chiral multiset partitions are A330227.
%Y A330294 Fully chiral partitions are A330228.
%Y A330294 Fully chiral factorizations are A330235.
%Y A330294 MM-numbers of fully chiral multisets of multisets are A330236.
%Y A330294 Cf. A000612, A016031, A055621, A083323, A283877, A319637, A330098, A330231, A330232, A330234.
%K A330294 nonn,more
%O A330294 0,2
%A A330294 _Gus Wiseman_, Dec 10 2019