This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330294 #11 Jan 05 2020 12:03:02 %S A330294 1,2,3,10,899 %N A330294 Number of non-isomorphic fully chiral set-systems on n vertices. %C A330294 A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative. %e A330294 Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems: %e A330294 0 0 0 0 %e A330294 {1} {1} {1} %e A330294 {2}{12} {2}{12} %e A330294 {1}{3}{23} %e A330294 {2}{13}{23} %e A330294 {3}{23}{123} %e A330294 {2}{3}{13}{23} %e A330294 {1}{3}{23}{123} %e A330294 {2}{13}{23}{123} %e A330294 {2}{3}{13}{23}{123} %Y A330294 The labeled version is A330282. %Y A330294 Partial sums of A330295 (the covering case). %Y A330294 Unlabeled costrict (or T_0) set-systems are A326946. %Y A330294 BII-numbers of fully chiral set-systems are A330226. %Y A330294 Non-isomorphic fully chiral multiset partitions are A330227. %Y A330294 Fully chiral partitions are A330228. %Y A330294 Fully chiral factorizations are A330235. %Y A330294 MM-numbers of fully chiral multisets of multisets are A330236. %Y A330294 Cf. A000612, A016031, A055621, A083323, A283877, A319637, A330098, A330231, A330232, A330234. %K A330294 nonn,more %O A330294 0,2 %A A330294 _Gus Wiseman_, Dec 10 2019