cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330295 Number of non-isomorphic fully chiral set-systems covering n vertices.

This page as a plain text file.
%I A330295 #7 Jan 05 2020 12:03:15
%S A330295 1,1,1,7,889
%N A330295 Number of non-isomorphic fully chiral set-systems covering n vertices.
%C A330295 A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.
%e A330295 Non-isomorphic representatives of the a(0) = 1 through a(3) = 7 set-systems:
%e A330295   0  {1}  {1}{12}  {1}{2}{13}
%e A330295                    {1}{12}{23}
%e A330295                    {1}{12}{123}
%e A330295                    {1}{2}{12}{13}
%e A330295                    {1}{2}{13}{123}
%e A330295                    {1}{12}{23}{123}
%e A330295                    {1}{2}{12}{13}{123}
%Y A330295 The labeled version is A330229.
%Y A330295 First differences of A330294 (the non-covering case).
%Y A330295 Unlabeled costrict (or T_0) set-systems are A326946.
%Y A330295 BII-numbers of fully chiral set-systems are A330226.
%Y A330295 Non-isomorphic fully chiral multiset partitions are A330227.
%Y A330295 Fully chiral partitions are A330228.
%Y A330295 Fully chiral factorizations are A330235.
%Y A330295 MM-numbers of fully chiral multisets of multisets are A330236.
%Y A330295 Cf. A000612, A016031, A055621, A083323, A283877, A319637, A330098, A330231, A330232, A330234, A330282.
%K A330295 nonn,more
%O A330295 0,4
%A A330295 _Gus Wiseman_, Dec 10 2019