This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330297 #10 Jan 05 2020 12:03:24 %S A330297 0,0,1,3,24,540,13320 %N A330297 Number of labeled simple graphs covering n vertices with exactly two automorphisms, or with exactly n!/2 graphs obtainable by permuting the vertices. %C A330297 These are graphs with exactly one involution and no other symmetries. %H A330297 Gus Wiseman, <a href="/A330297/a330297.png">All 9 distinct unlabeled representatives of the a(5) = 540 graphs.</a> %F A330297 a(n) = n!/2 * A330346(n). %e A330297 The a(4) = 24 graphs: %e A330297 {12,13,24} {12,13,14,23} %e A330297 {12,13,34} {12,13,14,24} %e A330297 {12,14,23} {12,13,14,34} %e A330297 {12,14,34} {12,13,23,24} %e A330297 {12,23,34} {12,13,23,34} %e A330297 {12,24,34} {12,14,23,24} %e A330297 {13,14,23} {12,14,24,34} %e A330297 {13,14,24} {12,23,24,34} %e A330297 {13,23,24} {13,14,23,34} %e A330297 {13,24,34} {13,14,24,34} %e A330297 {14,23,24} {13,23,24,34} %e A330297 {14,23,34} {14,23,24,34} %t A330297 graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]]; %t A330297 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[graprms[#]]==n!/2&]],{n,0,5}] %Y A330297 The non-covering version is A330345. %Y A330297 The unlabeled version is A330346 (not A241454). %Y A330297 Covering simple graphs are A006129. %Y A330297 Covering graphs with exactly one automorphism are A330343. %Y A330297 Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering). %Y A330297 Cf. A003400, A006125, A016031, A124059, A143543, A241454, A330098, A330229, A330230, A330231, A330233. %K A330297 nonn,more %O A330297 0,4 %A A330297 _Gus Wiseman_, Dec 12 2019