cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330301 Number of chains of binary reflexive matrices of order n.

This page as a plain text file.
%I A330301 #54 Jul 03 2025 04:23:00
%S A330301 1,1,11,18731,112366270379,10710751184977536812459,
%T A330301 45614275176047521934969856784739607851,
%U A330301 19643251901558299817275038399757555422179135786779642874411
%N A330301 Number of chains of binary reflexive matrices of order n.
%C A330301 Also, the number of chains in the power set of (n^2-n) elements.
%C A330301 a(n) is the number of distinct n X n reflexive fuzzy matrices.
%D A330301 S. Nkonkobe and V. Murali, A study of a family of generating functions of Nelsen-Schmidt type and some identities on restricted barred preferential arrangements, Discrete Math., Vol. 340(5) (2017), pp. 1122-1128.
%H A330301 Alois P. Heinz, <a href="/A330301/b330301.txt">Table of n, a(n) for n = 0..21</a>
%H A330301 S. R. Kannan and Rajesh Kumar Mohapatra, <a href="https://arxiv.org/abs/1909.13678">Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques</a>, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
%H A330301 V. Murali, <a href="https://doi.org/10.1016/j.fss.2006.03.005">Combinatorics of counting finite fuzzy subsets</a>, Fuzzy Sets Syst., 157(17)(2006), 2403-2411.
%H A330301 V. Murali and B. Makamba, <a href="https://doi.org/10.1080/03081070512331318356">Finite Fuzzy Sets</a>, Int. J. Gen. Syst., Vol. 34 (1) (2005), pp. 61-75.
%H A330301 R. B. Nelsen and H. Schmidt, Jr., <a href="http://www.jstor.org/stable/2690450">Chains in power sets</a>, Math. Mag., 64 (1) (1991), 23-31.
%H A330301 S. Nkonkobe, V. Murali, <a href="http://arxiv.org/abs/1503.06172">A study of a family of generating functions of Nelsen-Schmidt type and some identities on restricted barred preferential arrangements</a>, arXiv:1503.06172 [math.CO] Apr 2015.
%F A330301 a(n) = A007047(n^2-n).
%p A330301 # P are the polynomials defined in A007047.
%p A330301 a := n -> 2^(n^2-n)*subs(x=1/2, P(n^2-n, x)):
%p A330301 seq(a(n), n=0..7);
%t A330301 Array[2 PolyLog[-(#^2-#), 1/2] - 1 &, 8, 0]
%t A330301 Table[2*PolyLog[-(n^2-n), 1/2] - 1, {n, 0, 19}]
%t A330301 Table[LerchPhi[1/2, -(n^2-n), 2]/2, {n, 0, 9}]
%Y A330301 Cf. A007047, A328044.
%K A330301 nonn
%O A330301 0,3
%A A330301 S. R. Kannan, _Rajesh Kumar Mohapatra_, Jan 01 2020