A330315 a(n) = r(n)*r(n+1), where r(n) = A004018(n) is the number of ways of writing n as a sum of two squares.
4, 16, 0, 0, 32, 0, 0, 0, 16, 32, 0, 0, 0, 0, 0, 0, 32, 32, 0, 0, 0, 0, 0, 0, 0, 96, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 32, 64, 0, 0, 0, 0, 0, 0, 32, 32, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 96
Offset: 0
Keywords
References
- H. Iwaniec. Spectral methods of automorphic forms, volume 53 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Fernando Chamizo, Correlated sums of r(n), J. Math. Soc. Japan, 51(1):237-252, 1999.
- Fernando Chamizo, and Roberto J. Miatello, Sums of squares in real quadratic fields and Hilbert modular groups, arXiv preprint arXiv:1812.10725 [math.NT], 2018.
Programs
-
Maple
N:= 200: # for a(0)..a(N) g1:= 1 + 2*add(x^(i^2),i=1..floor(sqrt(N+1))): g2:= expand(g1^2): R:= [seq(coeff(g2,x,i),i=0..N+1)]: seq(R[i]*R[i+1],i=1..N+1); # Robert Israel, Jun 12 2020
-
Mathematica
a[n_] := SquaresR[2, n] SquaresR[2, n + 1]; a /@ Range[0, 100] (* Giovanni Resta, Jun 12 2020 *)
Comments