This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330341 #30 Jan 09 2020 19:23:34 %S A330341 0,0,1,0,0,1,0,1,3,3,0,0,3,12,12,0,1,10,46,90,60,0,0,9,120,480,720, %T A330341 360,0,1,27,384,2235,5670,6300,2520,0,0,29,980,9380,36960,68880,60480, %U A330341 20160,0,1,75,2904,38484,217152,604800,876960,635040,181440 %N A330341 Triangle read by rows: T(n,k) is the number of n-bead bracelets using exactly k colors with no adjacent beads having the same color. %C A330341 In the case of n = 1, the single bead is considered to be cyclically adjacent to itself giving T(1,1) = 0. If compatibility with A208544 is wanted then T(1,1) should be 1. %H A330341 Andrew Howroyd, <a href="/A330341/b330341.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %F A330341 T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A208544(n,j) for n > 1. %e A330341 Triangle begins: %e A330341 0; %e A330341 0, 1; %e A330341 0, 0, 1; %e A330341 0, 1, 3, 3; %e A330341 0, 0, 3, 12, 12; %e A330341 0, 1, 10, 46, 90, 60; %e A330341 0, 0, 9, 120, 480, 720, 360; %e A330341 0, 1, 27, 384, 2235, 5670, 6300, 2520; %e A330341 0, 0, 29, 980, 9380, 36960, 68880, 60480, 20160; %e A330341 ... %o A330341 (PARI) \\ here U(n, k) is A208544(n, k) for n > 1. %o A330341 U(n, k) = (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2; %o A330341 T(n, k)={sum(j=1, k, (-1)^(k-j)*binomial(k, j)*U(n, j))} %Y A330341 Column 3 is A330632. %Y A330341 Row sums are A330621. %Y A330341 Cf. A208544, A273891, A330618. %K A330341 nonn,tabl %O A330341 1,9 %A A330341 _Andrew Howroyd_, Dec 20 2019