cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330343 Number of labeled fully chiral simple graphs (also called identity or asymmetric graphs) covering n vertices.

Original entry on oeis.org

1, 0, 0, 0, 0, 5760, 766080, 149022720, 48990251520, 28928242022400, 32147584690636800, 69035206021583155200
Offset: 1

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Comments

In a fully chiral graph, every permutation of the vertices gives a different representative, so the only automorphism is the identity.

Crossrefs

The unlabeled version is A003400.
Identity trees are A004111.
Covering simple graphs are A006129.
Full chiral integer partitions are A330228.
Fully chiral factorizations are A330235.
Fully chiral set-systems are A330229 (labeled covering), A330282 (labeled), A330294 (unlabeled), A330295 (unlabeled covering).
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), A330346 (unlabeled covering), A241454 (unlabeled connected).

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[graprms[#]]==n!&]],{n,5}] (* brute force, not for computation *)

Formula

a(n) = n! * A003400(n).