This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330355 #18 Dec 26 2019 05:44:55 %S A330355 0,1,2,1,4,5,2,7,8,1,10,11,4,11,14,5,4,17,2,11,20,7,22,7,8,25,22,1,28, %T A330355 7,10,11,4,11,14,5,4,17,2,11,40,41,14,41,44,5,14,47,4,41,50,17,52,17, %U A330355 2,55,52,11,58,17,20,7,22,7,8,25,22,1,28,7,70,71,8 %N A330355 Starting from n: as long as the decimal representation contains a positive multiple of 3, divide the largest and leftmost such substring by 3; a(n) corresponds to the final value. %C A330355 This sequence is a variant of A329424. %H A330355 Robert Israel, <a href="/A330355/b330355.txt">Table of n, a(n) for n = 0..10000</a> %H A330355 Rémy Sigrist, <a href="/A330355/a330355_1.gp.txt">PARI program for A330355</a> %F A330355 a(n) <= n with equality iff n = 0 or n belongs to A325112. %F A330355 a(3^k) = 1 for any k >= 0. %e A330355 For n = 193: %e A330355 - 193 gives 1 followed by 93/3 = 131, %e A330355 - 131 gives 1 followed by 3/3 followed by 1 = 111, %e A330355 - 111 gives 111/3 = 37, %e A330355 - 37 gives 3/3 followed by 7 = 17, %e A330355 - neither 1, 7 nor 17 are divisible by 3, so a(193) = 17. %p A330355 f:= proc(n) option remember; local L,m,i,d,np1,j,s; %p A330355 L:= convert(n,base,10); %p A330355 m:= nops(L); %p A330355 for d from m to 1 by -1 do %p A330355 for i from 1 to m-d+1 do %p A330355 s:= convert(L[i..i+d-1],`+`); %p A330355 if s > 0 and s mod 3 = 0 then %p A330355 np1:= add(L[j]*10^(j-1),j=1..i-1)+1/3*add(L[j]*10^(j-1),j=i..i+d-1); %p A330355 return procname(np1 + 10^(2+ilog10(np1)-(i+d))*add(L[j]*10^(j-1),j=i+d..m)); %p A330355 fi %p A330355 od %p A330355 od; %p A330355 n %p A330355 end proc: %p A330355 map(f, [$0..100]); # _Robert Israel_, Dec 25 2019 %o A330355 (PARI) See Links section. %Y A330355 Cf. A325112, A327539, A329424. %K A330355 nonn,base,look %O A330355 0,3 %A A330355 _Rémy Sigrist_, Dec 11 2019