This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330371 #28 Aug 17 2020 23:29:28 %S A330371 1,2,1,1,3,2,1,1,1,1,4,3,1,2,2,2,1,1,1,1,1,1,5,4,1,3,2,3,1,1,2,2,1,2, %T A330371 1,1,1,1,1,1,1,1,6,5,1,4,2,4,1,1,3,3,3,2,1,2,2,2,3,1,1,1,2,2,1,1,2,1, %U A330371 1,1,1,1,1,1,1,1,1,7,6,1,5,2,5,1,1,4,3,4,2,1,3,3,1,4,1,1,1,3,2,2,3,2,1,1 %N A330371 Irregular triangle read by rows T(n,m) in which row n lists all partitions of n ordered by the lower value of their k-th ranks, or by their k-th largest parts if all their k-th ranks are zeros, with k = n..1. %C A330371 In this triangle the partitions of n are ordered by their n-th rank. The partitions that have the same n-th rank appears ordered by their (n-1)-st rank. The partitions that have the same n-th rank and the same (n-1)-st rank appears ordered by their (n-2)-nd rank, and so on. The partitions that have all k-ranks equal zero appears ordered by their largest parts, then by their second largest parts, then by their third largest parts, and so on. %C A330371 Note that a partition and its conjugate partition both are equidistants from the center of the list of partitions of n. %C A330371 For further information see A330370. %C A330371 First differs from A036037, A181317, A330370 and A334439 at a(48). %C A330371 First differs from A080577 at a(56). %e A330371 Triangle begins: %e A330371 [1]; %e A330371 [2], [1,1]; %e A330371 [3], [2,1], [1,1,1]; %e A330371 [4], [3,1], [2,2], [2,1,1], [1,1,1,1]; %e A330371 [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1]; %e A330371 [6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [2,2,2], [3,1,1,1], [2,2,1,1], ... %e A330371 . %e A330371 For n = 9 the 9th row of the triangle contains the partitions ordered as shown below: %e A330371 --------------------------------------------------------------------------------- %e A330371 Ranks %e A330371 Conjugate %e A330371 Label with label Partition k = 1 2 3 4 5 6 7 8 9 %e A330371 --------------------------------------------------------------------------------- %e A330371 1 30 [9] 8 -1 -1 -1 -1 -1 -1 -1 -1 %e A330371 2 29 [8, 1] 6 0 -1 -1 -1 -1 -1 -1 0 %e A330371 3 28 [7, 2] 5 0 -1 -1 -1 -1 -1 0 0 %e A330371 4 27 [7, 1, 1] 4 0 0 -1 -1 -1 -1 0 0 %e A330371 5 26 [6, 3] 4 1 -2 -1 -1 -1 0 0 0 %e A330371 6 25 [6, 2, 1] 3 0 0 -1 -1 -1 0 0 0 %e A330371 7 24 [6, 1, 1, 1] 2 0 0 0 -1 -1 0 0 0 %e A330371 8 23 [5, 4] 3 2 -2 -2 -1 0 0 0 0 %e A330371 9 22 [5, 3, 1] 2 1 -1 -1 -1 0 0 0 0 %e A330371 10 21 [5, 2, 2] 2 -1 1 -1 -1 0 0 0 0 %e A330371 11 20 [5, 2, 1, 1] 1 0 0 0 -1 0 0 0 0 %e A330371 12 19 [4, 4, 1] 1 2 -1 -2 0 0 0 0 0 %e A330371 13 18 [4, 3, 2] 1 0 0 -1 0 0 0 0 0 %e A330371 14 17 [4, 3, 1, 1] 0 1 -1 0 0 0 0 0 0 %e A330371 15 (self-conjugate) [5, 1, 1, 1, 1] All zeros -> 0 0 0 0 0 0 0 0 0 %e A330371 16 (self-conjugate) [3, 3, 3] All zeros -> 0 0 0 0 0 0 0 0 0 %e A330371 17 14 [4, 2, 2, 1] 0 -1 1 0 0 0 0 0 0 %e A330371 18 13 [3, 3, 2, 1] -1 0 0 1 0 0 0 0 0 %e A330371 19 12 [3, 2, 2, 2] -1 -2 1 2 0 0 0 0 0 %e A330371 20 11 [4, 2, 1, 1, 1] -1 0 0 0 1 0 0 0 0 %e A330371 21 10 [3, 3, 1, 1, 1] -2 1 -1 1 1 0 0 0 0 %e A330371 22 9 [3, 2, 2, 1, 1] -2 -1 1 1 1 0 0 0 0 %e A330371 23 8 [2, 2, 2, 2, 1] -3 -2 2 2 1 0 0 0 0 %e A330371 24 7 [4, 1, 1, 1, 1, 1] -2 0 0 0 1 1 0 0 0 %e A330371 25 6 [3, 2, 1, 1, 1, 1] -3 0 0 1 1 1 0 0 0 %e A330371 26 5 [2, 2, 2, 1, 1, 1] -4 -1 2 1 1 1 0 0 0 %e A330371 27 4 [3, 1, 1, 1, 1, 1, 1] -4 0 0 1 1 1 1 0 0 %e A330371 28 3 [2, 2, 1, 1, 1, 1, 1] -5 0 1 1 1 1 1 0 0 %e A330371 29 2 [2, 1, 1, 1, 1, 1, 1, 1] -6 0 1 1 1 1 1 1 0 %e A330371 30 1 [1, 1, 1, 1, 1, 1, 1, 1, 1] -8 1 1 1 1 1 1 1 1 %Y A330371 Another version of A330370. %Y A330371 Row n contains A000041(n) partitions. %Y A330371 Row n has length A006128(n). %Y A330371 The sum of n-th row is A066186(n). %Y A330371 Cf. A000700, A036037, A080577, A181317, A207031, A330368, A330370, A334439. %Y A330371 For the "k-th rank" see also: A181187, A208478, A208479, A208482, A208483. %K A330371 nonn,tabf %O A330371 1,2 %A A330371 _Omar E. Pol_, Dec 15 2019