This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330374 #24 Dec 31 2019 08:26:35 %S A330374 1,0,2,1,0,2,1,2,0,2,1,2,2,0,2,1,4,2,2,0,2,3,2,4,2,2,0,2,2,6,4,4,2,2, %T A330374 0,2,4,6,6,4,4,2,2,0,2,4,10,6,8,4,4,2,2,0,2,6,10,12,6,8,4,4,2,2,0,2,7, %U A330374 16,12,12,8,8,4,4,2,2,0,2,11,16,18,14,12,8,8,4,4,2,2,0,2,11,26,20,20,14,14 %N A330374 Triangle read by rows: T(n,k) is the number of partitions of n whose absolute value of Dyson's rank is equal to k, with 0 <= k < n. %C A330374 The rank of a partition is the largest part minus the number of parts. %C A330374 Since the largest part of a partition equals the number of parts of its conjugate partition, so the rank of a partition also is equal to the difference between the number of parts of its conjugate partition and the number of parts of the partition. %F A330374 T(n,k) = A063995(n,k)*A040000(k), 0 <= k < n. %e A330374 Triangle begins: %e A330374 -------------------------------------------------------------------- %e A330374 n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A330374 -------------------------------------------------------------------- %e A330374 [ 1] 1; %e A330374 [ 2] 0, 2; %e A330374 [ 3] 1, 0, 2; %e A330374 [ 4] 1, 2, 0, 2; %e A330374 [ 5] 1, 2, 2, 0, 2; %e A330374 [ 6] 1, 4, 2, 2, 0, 2; %e A330374 [ 7] 3, 2, 4, 2, 2, 0, 2; %e A330374 [ 8] 2, 6, 4, 4, 2, 2, 0, 2; %e A330374 [ 9] 4, 6, 6, 4, 4, 2, 2, 0, 2; %e A330374 [10] 4, 10, 6, 8, 4, 4, 2, 2, 0, 2; %e A330374 [11] 6, 10, 12, 6, 8, 4, 4, 2, 2, 0, 2; %e A330374 [12] 7, 16, 12, 12, 8, 8, 4, 4, 2, 2, 0, 2; %e A330374 [13] 11, 16, 18, 14, 12, 8, 8, 4, 4, 2, 2, 0, 2; %e A330374 [14] 11, 26, 20, 20, 14, 14, 8, 8, 4, 4, 2, 2, 0, 2; %e A330374 [15] 16, 28, 30, 22, 22, 14, 14, 8, 8, 4, 4, 2, 2, 0, 2; %e A330374 ... %Y A330374 Row sums give A000041, n >= 1. %Y A330374 Leading diagonal gives A040000. %Y A330374 Second diagonal gives A000004. %Y A330374 Column k=0 is A047993. %Y A330374 Cf. A063995, A105805, A194547, A194549, A195822, A208478, A209616, A330368. %K A330374 nonn,tabl %O A330374 1,3 %A A330374 _Omar E. Pol_, Dec 18 2019