A330375 Irregular triangle read by rows: T(n,k) (n>=1) is the sum of the lengths of all k-th right angles in all partitions of n.
1, 4, 9, 19, 1, 33, 2, 59, 7, 93, 12, 150, 26, 226, 43, 1, 342, 76, 2
Offset: 1
Examples
Triangle begins: 1; 4; 9; 19, 1; 33, 2; 59, 7; 93, 12; 150, 26; 226, 43, 1; 342, 76, 2; ... Figure 1 shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. Figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2. . . Right-angles Right Part Ferrers diagram Part diagram angle _ _ _ _ _ _ _ 7 * * * * * * * 7 | _ _ _ _ _ _| 14 6 * * * * * * 6 | | _ _ _ _| 8 3 * * * 3 | | | | 2 3 * * * 3 | | |_| 2 * * 2 | |_| 1 * 1 | | 1 * 1 | | 1 * 1 |_| . Figure 1. Figure 2. . For n = 8 the partitions of 8 and their respective right-angles diagrams are as follows: . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1|_| 1| | 1| | 1| | 1|_| 1| | 1| | 1|_| 1| | 1|_| 1|_| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8 1| | 1|_| 1|_| . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7 2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1 1| | 1| | 1| | 1|_| 1| | 1| | 1|_| 1| | 1|_| 1|_| . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6 2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2 2| |_| 2| |_| 1| | 2|_|_| 1|_| 1| | 1|_| 1|_| 1|_| . _ _ _ _ _ _ _ _ _ 2| _|5 3| _ _|5 4| _ _ _|5 2| | |3 3| | _|3 4|_|_ _ _|3 2| | | 2|_|_| 2|_|_| . The sum of the lengths of the first right angles of all partitions of 8 is 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 7 + 7 + 7 + 7 + 7 + 6 + 6 + 6 + 6 + 6 + 6 + 5 + 5 + 5 = 150, so T(8,1) = 150. The sum of the second right angles of all partitions of 8 is 1 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 = 26, so T(8,2) = 26.
Comments