This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330376 #22 Feb 16 2025 08:33:59 %S A330376 1,3,6,10,2,15,5,21,14,28,26,36,50,45,80,3,55,130,7,66,190,19,78,280, %T A330376 41,91,385,80,105,532,143,120,700,248,136,924,399,4,153,1176,627,9, %U A330376 171,1500,949,24,190,1860,1397,51,210,2310,2003,107,231,2805,2823,193 %N A330376 Irregular triangle read by rows: T(n,k) is the total number of parts in all partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))). %H A330376 Andrew Howroyd, <a href="/A330376/b330376.txt">Table of n, a(n) for n = 1..1799</a> (rows 1..200) %H A330376 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DurfeeSquare.html">Durfee Square</a> %e A330376 Triangle begins: %e A330376 1; %e A330376 3; %e A330376 6; %e A330376 10, 2; %e A330376 15, 5; %e A330376 21, 14; %e A330376 28, 26; %e A330376 36, 50; %e A330376 45, 80, 3; %o A330376 (PARI) \\ by enumeration over partitions. %o A330376 ds(p)={for(i=2, #p, if(p[#p+1-i]<i, return(i-1))); #p} %o A330376 row(n)={my(v=vector(sqrtint(n))); forpart(p=n, v[ds(p)] += #p); v} %o A330376 { for(n=1, 10, print(row(n))) } \\ _Andrew Howroyd_, Feb 02 2022 %o A330376 (PARI) \\ by generating function. %o A330376 P(n,k,y)={1/prod(j=1, k, 1 - y*x^j + O(x*x^n))} %o A330376 T(n,k)={my(r=n-k^2); if(r<0, 0, subst(deriv(polcoef(y^k*P(r,k,1)*P(r,k,y), r)), y, 1))} %o A330376 { for(n=1, 10, print(vector(sqrtint(n), k, T(n,k)))) } \\ _Andrew Howroyd_, Feb 02 2022 %Y A330376 Row sums give A006128, n >= 1. %Y A330376 Column 1 gives A000217, n >= 1. %Y A330376 Cf. A114089, A115721, A115722, A115994, A116858, A118198, A208474, A330369, A330640, A330641, A330642, A330643. %Y A330376 Cf. A330369. %K A330376 nonn,tabf %O A330376 1,2 %A A330376 _Omar E. Pol_, Dec 22 2019 %E A330376 Terms a(10) and beyond from _Andrew Howroyd_, Feb 02 2022