A330379 Triangle read by rows: T(n,k) (1 <= k <= n) is the sum of the sizes of all right angles of size k of all partitions of n.
1, 0, 4, 0, 0, 9, 1, 0, 3, 16, 2, 0, 0, 8, 25, 3, 4, 0, 8, 15, 36, 4, 8, 0, 0, 20, 24, 49, 5, 12, 9, 0, 15, 36, 35, 64, 7, 16, 21, 0, 5, 36, 56, 48, 81, 9, 20, 33, 16, 0, 36, 63, 80, 63, 100, 13, 24, 45, 40, 0, 12, 77, 96, 108, 80, 121
Offset: 1
Examples
Triangle begins: 1; 0, 4; 0, 0, 9; 1, 0, 3, 16; 2, 0, 0, 8, 25; 3, 4, 0, 8, 15, 36; 4, 8, 0, 0, 20, 24, 49; 5, 12, 9, 0, 15, 36, 35, 64; 7, 16, 21, 0, 5, 36, 56, 48, 81; 9, 20, 33, 16, 0, 36, 63, 80, 63, 100; 13, 24, 45, 40, 0, 12, 77, 96, 108, 80, 121; ... Below the figure 1 shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. The figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2. . . Right-angles Right Part Ferrers diagram Part diagram angle _ _ _ _ _ _ _ 7 * * * * * * * 7 | _ _ _ _ _ _| 14 6 * * * * * * 6 | | _ _ _ _| 8 3 * * * 3 | | | | 2 3 * * * 3 | | |_| 2 * * 2 | |_| 1 * 1 | | 1 * 1 | | 1 * 1 |_| . Figure 1. Figure 2. . For n = 8 the partitions of 8 and their respective right-angles diagrams look as shown below: . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1| | 1|_| 1| | 1| | 1| | 1|_| 1| | 1| | 1|_| 1| | 1|_| 1|_| _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8 1| | 1|_| 1|_| . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7 2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1 1| | 1| | 1| | 1|_| 1| | 1| | 1|_| 1| | 1|_| 1|_| . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6 2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2 2| |_| 2| |_| 1| | 2|_|_| 1|_| 1| | 1|_| 1|_| 1|_| . _ _ _ _ _ _ _ _ _ 2| _|5 3| _ _|5 4| _ _ _|5 2| | |3 3| | _|3 4|_|_ _ _|3 2| | | 2|_|_| 2|_|_| . There are 5 right angles of size 1, so T(8,1) = 5*1 = 5. There are 6 right angles of size 2, so T(8,2) = 6*2 = 12. There are 3 right angles of size 3, so T(8,3) = 3*3 = 9. There are no right angle of size 4, so T(8,4) = 0*4 = 0. There are 3 right angles of size 5, so T(8,5) = 3*5 = 15. There are 6 right angles of size 6, so T(8,6) = 6*6 = 36. There are 5 right angles of size 7, so T(8,7) = 5*7 = 35. There are 8 right angles of size 8, so T(8,8) = 8*8 = 64. Hence the 8th row of triangle is [5, 12, 9, 0, 15, 36, 35, 64]. The row sum gives A066186(8) = 8*A000041(8) = 8*22 = 176.
References
- G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143.
Crossrefs
Formula
T(n,k) = k*A330369(n,k).
Comments