This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330390 #34 Jul 31 2021 20:09:10 %S A330390 1,17,51,391,1649,9945,47923,264911,1344513,7192513,37241747, %T A330390 196756215,1026622129,5398099913,28248776019,148265250559, %U A330390 776759693441,4074028646385,21352972081267,111964431151079,586929387683697,3077254104935737,16132307800494323 %N A330390 G.f.: (1 + 15*x) / (1 - 2*x - 17*x^2). %H A330390 Colin Barker, <a href="/A330390/b330390.txt">Table of n, a(n) for n = 0..1000</a> %H A330390 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,17). %F A330390 a(n) = 2*a(n-1) + 17*a(n-2) for n>1. %F A330390 a(n)/a(n-1) ~ 1 + 3*sqrt(2). %F A330390 a(n) = ((1 - 3*sqrt(2))^n*(-16+3*sqrt(2)) + (1+3*sqrt(2))^n*(16 + 3*sqrt(2))) / (6*sqrt(2)). - _Colin Barker_, Dec 14 2019 %t A330390 CoefficientList[Series[(1+15x)/(1-2x-17x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,17},{1,17},30] (* _Harvey P. Dale_, Jul 31 2021 *) %o A330390 (PARI) Vec((1 + 15*x) / (1 - 2*x - 17*x^2) + O(x^25)) \\ _Colin Barker_, Jan 25 2020 %Y A330390 Cf. A164544, A328606. %K A330390 nonn,easy %O A330390 0,2 %A A330390 _Kyle MacLean Smith_, Dec 13 2019