This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330391 #61 Aug 08 2023 03:22:58 %S A330391 1,0,0,1,1,0,5,1105,75307 %N A330391 Number of main classes of diagonal Latin squares of order n with at least one orthogonal diagonal mate. %H A330391 Natalia Makarova, <a href="https://boinc.progger.info/odlk/forum_thread.php?id=173">Database CF ODLS of order n</a> %H A330391 E. I. Vatutin, <a href="https://vk.com/wall162891802_1085">Discussion about properties of diagonal Latin squares</a> (in Russian) %H A330391 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_odls_1_to_8.zip">List of all main classes of orthogonal diagonal Latin squares of orders 1-8</a>. %H A330391 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_odls_9.zip">List of all main classes of orthogonal diagonal Latin squares of order 9</a>. %H A330391 E. I. Vatutin, <a href="https://disk.yandex.ru/d/N5q5wsPeeCSVPg">List of known main classes of orthogonal diagonal Latin squares of order 11</a>. %H A330391 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian) %H A330391 E. Vatutin, A. Belyshev, <a href="https://www.springerprofessional.de/en/enumerating-the-orthogonal-diagonal-latin-squares-of-small-order/18659992">Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality</a>, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597. %H A330391 Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian). %H A330391 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %F A330391 a(n) = A287764(n) - A337309(n). %Y A330391 Cf. A287651, A287764, A287695, A305570, A305571, A337309. %K A330391 nonn,more,hard %O A330391 1,7 %A A330391 _Eduard I. Vatutin_, Feb 25 2020 %E A330391 a(9) added by _Eduard I. Vatutin_, Dec 12 2020