cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330392 Decimal expansion of smallest x > 1 satisfying x^(i*x) = 1, where i is the imaginary unit.

This page as a plain text file.
%I A330392 #47 Feb 16 2025 08:33:59
%S A330392 4,3,0,4,5,3,0,3,2,4,5,1,7,4,3,9,4,1,5,6,5,7,1,0,1,8,7,8,3,2,2,0,4,3,
%T A330392 1,8,2,6,7,1,4,9,5,4,5,8,9,8,3,8,3,9,8,3,3,7,7,7,4,0,1,3,6,8,8,0,0,1,
%U A330392 6,0,8,0,7,5,4,5,6,4,2,1,3,2,0,3,2,2,2,5,6,5,4,0,3,3,1,4,9,0,9,7,9,0,0,9,3
%N A330392 Decimal expansion of smallest x > 1 satisfying x^(i*x) = 1, where i is the imaginary unit.
%H A330392 Tim Warriner, <a href="http://www.timwarriner.com/Removing_The_Mystery_Of_Eulers_Formula_by_Tim_Warriner_[Updated_2019-01-13-1618].pdf">Removing the Mystery of Euler’s Formula exp(iθ) = cos θ + i sin θ</a>.
%H A330392 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%H A330392 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lambert_W_function">Lambert W function</a>.
%F A330392 Equals 1/A202495.
%F A330392 Equals 2*Pi/LambertW(2*Pi). - _Alois P. Heinz_, Feb 26 2020
%e A330392 4.3045303245174394156571018783220431826714954589838...
%p A330392 evalf(2*Pi/LambertW(2*Pi), 145);  # _Alois P. Heinz_, Feb 26 2020
%t A330392 RealDigits[(2*Pi)/ProductLog[2*Pi], 10, 120][[1]] (* _Amiram Eldar_, May 31 2023 *)
%o A330392 (PARI) 2*Pi/lambertw(2*Pi) \\ _Michel Marcus_, Feb 27 2020
%Y A330392 Cf. A000796, A202495.
%K A330392 nonn,cons
%O A330392 1,1
%A A330392 _Tim Warriner_, Feb 26 2020