cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330397 Composite numbers k such that gpf(k)^2 + gpf(k) == 0 (mod k), where gpf(k) = A006530(k) is the greatest prime dividing k.

Original entry on oeis.org

6, 10, 12, 14, 15, 22, 26, 28, 30, 33, 34, 38, 44, 46, 51, 56, 58, 62, 66, 69, 74, 76, 82, 86, 87, 91, 92, 94, 95, 102, 106, 118, 122, 123, 124, 132, 134, 138, 141, 142, 145, 146, 153, 158, 159, 166, 172, 174, 177, 178, 182, 184, 188, 190, 194, 202, 206, 213, 214, 218, 226, 236
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 25 2020

Keywords

Comments

All terms are in either A036690 or A064052. - Charles R Greathouse IV, Mar 27 2020

Crossrefs

Supersequence of A000396 and A036690.

Programs

  • Magma
    [k: k in [4..240] | -Maximum(PrimeDivisors(k))^2 mod k eq Maximum(PrimeDivisors(k))];
    
  • Mathematica
    Select[Range[250], (g = FactorInteger[#][[-1, 1]]) < # && Divisible[g^2 + g, #] &] (* Amiram Eldar, Feb 25 2020 *)
  • PARI
    gpf(n,f=factor(n))=f=f[,1]; if(#f==0,1,f[#f]);
    is(n)=my(g=gpf(n)); gCharles R Greathouse IV, Mar 26 2020
    
  • PARI
    list(lim)=my(v=List()); forfactored(N=6,lim\1, my(n=N[1],f=N[2][,1],i=#f); if(i>1 && (f[i]^2+f[i])%n==0, listput(v,n))); Vec(v); \\ Charles R Greathouse IV, Mar 27 2020