A330417 Coefficient of e(y) in Sum_{k > 0, i > 0} x_i^k = p(1) + p(2) + p(3) + ..., where e is the basis of elementary symmetric functions, p is the basis of power-sum symmetric functions, and y is the integer partition with Heinz number n.
0, 1, -2, 1, 3, -3, -4, 1, 2, 4, 5, -4, -6, -5, -5, 1, 7, 5, -8, 5, 6, 6, 9, -5, 3, -7, -2, -6, -10, -12, 11, 1, -7, 8, -7, 9, -12, -9, 8, 6, 13, 14, -14, 7, 7, 10, 15, -6, 4, 7, -9, -8, -16, -7, 8, -7, 10, -11, 17, -21, -18, 12, -8, 1, -9, -16, 19, 9, -11
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
Table[If[n==1,0,With[{tot=Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]},(-1)^(tot-PrimeOmega[n])*tot*(PrimeOmega[n]-1)!/(Times@@Factorial/@FactorInteger[n][[All,2]])]],{n,30}]
Comments