This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330437 #50 May 01 2020 12:19:25 %S A330437 1,1,1,2,1,2,1,2,2,2,1,3,1,3,2,2,1,2,1,2,2,2,1,2,2,5,4,2,1,4,1,2,4,4, %T A330437 3,2,1,3,2,2,1,2,1,2,2,2,1,3,3,2,2,3,1,2,2,3,2,2,1,2,1,3,2,4,3,2,1,2, %U A330437 2,2,1,4,1,3,2,2,2,2,1,4,2,2,1,4,2,3,2,4,1,2,2,4,4,4,3,2,1,3,2,4 %N A330437 Length of trajectory of n under the map n -> n - 1 + n/gpf(n) or 0 if no fixed point is reached, where gpf(n) is the greatest prime factor of n. %C A330437 The table of trajectories of n under is given in A329288. %C A330437 All fixed points, besides 1, are prime. %C A330437 Conjecture: every number appears in the sequence infinitely many times. %C A330437 Conjecture: all terms are nonzero, i.e., every trajectory eventually reaches a prime. %H A330437 Robert Israel, <a href="/A330437/b330437.txt">Table of n, a(n) for n = 1..10000</a> %F A330437 a(p) = 1 for any prime number p. %e A330437 For n = 26 the trajectory is (26, 27, 35, 39, 41) so a(26) = 5. %p A330437 g:= n -> n - 1 + n/max(numtheory:-factorset(n)): %p A330437 f:= proc(n) option remember; %p A330437 if isprime(n) then 1 else 1+ procname(g(n)) fi %p A330437 end proc: %p A330437 f(1):= 1: %p A330437 map(f, [$1..200]); # _Robert Israel_, May 01 2020 %t A330437 Clear[f,it,order,seq]; f[n_]:=f[n]=n-1+n/FactorInteger[n][[-1]][[1]]; it[k_,n_]:=it[k,n]=f[it[k,n-1]]; it[k_,1]=k; order[n_]:=order[n]=SelectFirst[Range[1,100], it[n,#]==it[n,#+1]&]; Print[order/@Range[1,100]]; %o A330437 (PARI) apply( {a(n,c=1)=n>1&&while(n<n+=n/vecmax(factor(n)[,1])-1,c++);c}, [1..99]) \\ _M. F. Hasler_, Feb 19 2020 %Y A330437 Cf. A006530 (greatest prime factor), A329288, A330704 (greedy inverse). %Y A330437 Cf. A270807, A120685, A331410. %K A330437 nonn %O A330437 1,4 %A A330437 _Elijah Beregovsky_, Feb 16 2020